Developing a High-Flow Acoustofluidic Loading Platform for Research Cell Stabilization in the Anhydrous State
开发用于研究细胞在无水状态下稳定的高流量声流体加载平台
基本信息
- 批准号:10603701
- 负责人:
- 金额:$ 28.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAnimalsAntineoplastic AgentsAreaAsphyxiaBiological AssayCancer ModelCell CountCell Culture TechniquesCell LineCell NucleusCell SurvivalCell VolumesCell modelCellsCellular StructuresComplexCryoprotective AgentsCulture MediaDangerousnessDataDesiccationDevicesDimensionsDrynessEffectivenessEquipmentErythrocytesEukaryotic CellExclusionExposure toFailureFluorescence MicroscopyFreeze DryingFreezingFutureGasesGoalsGrantHazardous SubstancesHepG2HourHumanHydration statusInduction of ApoptosisLipidsLiquid substanceLongevityMaintenanceMeasuresMedicalMedical ResearchMembraneMethodsMicrobubblesMicrofluidicsMicroscopicMitochondriaModificationMothersNitrogenNucleotidesOrganellesPhasePlantsProcessProtective AgentsProteinsProtocols documentationPublicationsQualifyingRecordsRecoveryReproducibilityResearchResearch PersonnelRiskSamplingSterilityStructureSuspensionsSystemTechniquesTechnologyTemperatureToxic effectTreatment EfficacyTrehaloseTrypan BlueUltrasonic waveVendorWaterWorkanticancer researchcancer cellcancer therapycold temperaturecostcryogenicsdaughter celldesigndrug discoverydrug efficacyefficacy studyevaporationexperienceexperimental studyfabricationinnovationnovelnovel therapeuticspreservationpressureprototyperepairedsafety studysealsonoporationsuccesstoolultrasound
项目摘要
Project Summary
Model cells for cancer research and drug discovery are currently stored using cryogenic methods that
necessitate powerful freezers and liquid nitrogen. Frozen cells require regular upkeep, have high energy costs,
take up a lot of space, and rapidly degrade if cooling devices fail. Efforts to develop a lyophilization protocol for
model cell lines have been ongoing for decades, however, loading protective agents into nucleated cells has
proven challenging. DesiCorp has developed a novel and innovative cell loading device, termed the high flow
acoustofluidic loading (HFAL) that can deliver protective osmolytes, proteins, and nucleotides into eukaryotic
cells. Unlike microfluidic loading techniques, HFAL uses large channel dimensions that allow substantially
larger volumes of cell suspension to flow through it at once. The cells are mixed with cationic lipid-coated
microbubbles that resonate with ultrasound waves, inducing cavitation. These cavitation-induced microjets
physically inject compounds from the surrounding media into the cells in suspension, which then repair any
membrane damage and seal membrane-impermeant compounds inside of the cell. This technology has
previously been utilized to load human erythrocytes with protective compounds, allowing them to be
lyophilized, stored at ambient temperatures, then rehydrated with over 90% cell recovery. A notable innovation
of the HFAL platform is the ability to load cells at high rates, exceeding 500 billion erythrocytes per minute.
However, the unique challenges of protecting organelles requires additional work to design and validate the
HFAL platform for eukaryotic cell stabilization during lyophilization. The specific aims for this proposal are 1) to
develop a complete, sterile acoustofluidic loading system that loads HepG2 and HEK 293 cells with over 60%
cell recovery, which will be measured using trypan-blue exclusion; 2) to achieve compound loading into HepG2
and HEK293 that is sufficient for their stabilization in the desiccated state, which will be measured using
enzymatic and colorimetric assays; and 3) to lyophilize HepG2 and HEK293 cells, store them at ambient
temperature, and rehydrate them with high enough recovery for culturing and their organelle structure should
resemble that of frozen and thawed model cells, which will be measured using fluorescence microscopy. The
main criterion for success of this phase I proposal is the fabrication of a fully integrated acoustofluidic loading
platform that successfully loads eukaryotic cells with protective agents that allow them to be lyophilized, stored,
rehydrated, and cultured. Lyophilized cell stocks have several advantages over cryogenically preserved cells,
such as the lack of ongoing maintenance and energy costs. Large storage devices, such as freezers or liquid
nitrogen dewars, are unnecessary for lyophilized products because they are thermally stable. If this proposed
work is successful, then cell stocks could be stored in drawers, binders, or even with the notebooks detailing
their creation, modification, and data associated with grants or publications.
项目概要
用于癌症研究和药物发现的模型细胞目前使用低温方法储存,
需要强大的冰箱和液氮。冷冻细胞需要定期维护,能源成本高,
占用大量空间,并且如果冷却设备发生故障,性能会迅速下降。努力开发冻干方案
模型细胞系已经存在了几十年,然而,将保护剂加载到有核细胞中已经
事实证明具有挑战性。 DesiCorp 开发了一种新颖且创新的细胞装载装置,称为高流量
声流体加载(HFAL),可以将保护性渗透剂、蛋白质和核苷酸传递到真核生物中
细胞。与微流体加载技术不同,HFAL 使用大通道尺寸,可充分
更大体积的细胞悬浮液立即流过它。将细胞与阳离子脂质包被混合
与超声波共振的微泡,引起空化。这些空化引起的微射流
将周围介质中的化合物物理注射到悬浮细胞中,然后修复任何
膜损伤并将不渗透膜的化合物密封在细胞内。这项技术有
以前被用来给人类红细胞装载保护性化合物,使它们能够
冻干,室温保存,然后再水化,细胞回收率超过 90%。一项显着的创新
HFAL 平台的特点是能够高速加载细胞,每分钟超过 5000 亿个红细胞。
然而,保护细胞器的独特挑战需要额外的工作来设计和验证
用于冻干过程中真核细胞稳定的 HFAL 平台。该提案的具体目标是 1)
开发完整的无菌声流加载系统,加载 HepG2 和 HEK 293 细胞超过 60%
细胞回收率,将使用台盼蓝排除法进行测量; 2) 实现化合物加载到HepG2中
和 HEK293 足以使其在干燥状态下稳定,这将使用
酶法和比色分析; 3) 冻干 HepG2 和 HEK293 细胞,将其储存在环境温度下
温度,并以足够高的回收率再水化它们以进行培养,并且它们的细胞器结构应
类似于冷冻和解冻的模型细胞,将使用荧光显微镜进行测量。这
第一阶段提案成功的主要标准是制造完全集成的声流体负载
成功地向真核细胞装载保护剂的平台,使它们能够被冻干、储存、
再水化并培养。与低温保存的细胞相比,冻干细胞储液具有多种优势,
例如缺乏持续的维护和能源成本。大型存储设备,例如冰箱或液体
氮杜瓦瓶对于冻干产品来说是不必要的,因为它们具有热稳定性。如果这个提议
工作成功,然后细胞库存可以存放在抽屉、活页夹中,甚至可以与详细说明的笔记本一起存放
它们的创建、修改以及与资助或出版物相关的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brett R Janis其他文献
Brett R Janis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 28.19万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 28.19万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 28.19万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 28.19万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 28.19万 - 项目类别: