Nanoparticle Coated Microelectrode Arrays for Electrochemically Controlled Gene Editing at the Electrode Site
用于电极位点电化学控制基因编辑的纳米颗粒涂层微电极阵列
基本信息
- 批准号:10604904
- 负责人:
- 金额:$ 7.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAfferent NeuronsAntiinflammatory EffectAreaAstrocytesBiocompatible Coated MaterialsBrainCell Culture TechniquesCellsCellular MorphologyChronicCicatrixClinicalClustered Regularly Interspaced Short Palindromic RepeatsDNADNA SequenceDevelopmentDevicesElectrodesEncapsulatedEquipment MalfunctionFailureFluorescenceForeign BodiesFormulationGene DeliveryGene ExpressionGene ModifiedGene Transduction AgentGene TransferGenesGliosisHearingImmune responseImplantIn VitroInflammationInflammatoryInflammatory ResponseInterventionKnock-outLifeLimb structureLongevityMeasuresMedicineMetalsMicroelectrodesMicrogliaModificationMonitorMusNeuronsPathway interactionsPatientsPatternPerceptionPerformancePlayPorosityPropertyProsthesisProteinsReporterReporter GenesResolutionRoleSensorySilicon DioxideSiteSpecificityStructureSurfaceSystemTechnologyTestingTherapeuticTherapeutic UsesTimeTissuesTouch sensationVisionWorkbioelectronicsbrain computer interfacecell typeexperimental studygene therapyimplantable deviceimplantationimprovedin vitro testingin vivoknockout genelimb lossloss of functionmechanical devicenanoparticleneuralneuron lossneurotransmissionnovelpreventprosthesis controlrecruitresponserobot controlspatiotemporaltechnology developmenttooltwo photon microscopyvector
项目摘要
Abstract
Microelectrode arrays (MEAs) have great potential for therapeutic use in direct brain-computer interface (BCI)
control of robotic prostheses to improve the lives of patients suffering from debilitating conditions related to loss
of limbs or limb function. MEAs also have the potential to restore loss of sensory perception in vision, hearing,
and tactile sensation by applying patterned current stimulation to sensory neurons. As promising as these
therapies are, there is a major shortcoming to the current state of the art in implanted MEAs in that their recording
and stimulation quality degrades over time, and the implants eventually become non-functional. Their use as
therapeutic devices to treat chronic conditions that persist for the patient's life requires MEAs that are stable over
decades rather than months to years. The underlying mechanisms leading to failure for chronically implanted
MEAs have yet to be fully elucidated. One candidate is degradation of the electrode or insulation material leading
to mechanical device failure. Another important factor is the host foreign body response. Inflammation due to
activation of microglia and astrocytes can lead to gliosis and the formation of a “glial scar” encapsulating the
device and preventing efficient recording and stimulation of neurons. Recently, gene therapy-based interventions
using CRISPR/Cas systems for gene knockout have shown great promise in modifying the immune response.
Recent work in the Cui lab has shown the efficacy of using functionalized silica nanoparticles (SNPs) as a
versatile surface modification for microelectrodes. MEAs coated with polyethylenedioxythiophene (PEDOT)/SNP
have improved electrochemical properties over standard bare metal electrodes and the capacity to be loaded
with therapeutic compounds due to their porous structure with a high surface area. These properties make MEAs
coated with PEDOT/SNP an ideal platform for highly targeted gene delivery, as the silica nanoparticles can be
efficiently loaded with DNA. This proposal aims to develop this technology to efficiently gene modify microglia
locally around implanted MEAs to reduce inflammation and to measure the effect of inflammation on recording
quality and stimulation efficiency, as well as long-term device stability. In addition, I will investigate how changes
in the foreign body response affect the remodeling of tissue surrounding the implant. I will take the approach of
loading SNP coated MEAs with DNA encoding CRISPR gene therapy vectors targeting inflammatory pathways
in microglia. The CRISPR vectors will be electrochemically delivered to cells directly interfacing with the
implanted devices. The development of this technology has great potential to enhance the therapeutic value of
implanted devices by increasing their performance and longevity by reducing inflammation and gliosis and to
increase our fundamental understanding of how the brain responds to implanted devices. Once established, this
technology will be a versatile platform for highly targeted gene delivery, having both spatiotemporal and cell-type
specificity.
抽象的
微电极阵列(MEA)在直接脑机接口(BCI)中具有巨大的治疗用途潜力
控制机器人假肢,以改善因失去而导致衰弱的患者的生活
肢体或肢体功能的 MEA 也有可能恢复视觉、听觉、听觉等感官知觉的丧失。
和通过对感觉神经元施加图案化电流刺激来获得触觉。
疗法是,目前植入 MEA 的技术水平存在一个主要缺点,即它们的记录
随着时间的推移,刺激质量会下降,植入物最终会失去功能。
用于治疗患者终生持续的慢性疾病的治疗设备需要长期稳定的 MEA
导致长期植入失败的潜在机制是几十年而不是几个月到几年。
MEA 尚未完全阐明,其中之一是电极或绝缘材料的退化。
造成机械装置故障的另一个重要因素是主机异物反应所致。
小胶质细胞和星形胶质细胞的激活可导致神经胶质增生并形成包裹神经胶质细胞的“神经胶质疤痕”
最近,基于基因治疗的干预措施。
使用 CRISPR/Cas 系统进行基因敲除在改变免疫反应方面显示出巨大的前景。
Cui 实验室最近的工作表明了使用功能化二氧化硅纳米颗粒 (SNP) 作为
用于涂有聚乙烯二氧噻吩 (PEDOT)/SNP 的微电极的多功能表面修饰。
与标准裸金属电极相比,电化学性能和负载能力得到改善
由于其具有高表面积的多孔结构,这些特性使得 MEA 具有治疗性化合物。
涂有 PEDOT/SNP 的二氧化硅纳米颗粒是高度靶向基因递送的理想平台
该提案旨在开发这项技术来有效地对小胶质细胞进行基因修饰。
局部植入 MEA 周围,以减少炎症并测量炎症对记录的影响
此外,我将研究如何变化。
在异物反应影响植入物周围组织的重塑时,我将采取以下方法。
将编码 CRISPR 基因治疗载体的 DNA 加载到 SNP 包被的 MEA 上,靶向炎症途径
在小胶质细胞中,CRISPR载体将通过电化学方式传递至与小胶质细胞直接连接的细胞。
这项技术的发展具有提高治疗价值的巨大潜力。
通过减少炎症和神经胶质增生来提高植入设备的性能和寿命
一旦建立,就会增加我们对大脑如何响应植入设备的基本理解。
技术将成为高度靶向基因传递的多功能平台,具有时空和细胞类型
特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NATHANIEL P WILLIAMS其他文献
NATHANIEL P WILLIAMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Neuroimmune signaling in surgical wound healing and modulation by regional anesthesia
手术伤口愈合中的神经免疫信号传导和区域麻醉的调节
- 批准号:
10711153 - 财政年份:2023
- 资助金额:
$ 7.86万 - 项目类别:
Development of KLS-13019 for Neuropathic Pain
开发用于治疗神经性疼痛的 KLS-13019
- 批准号:
10326595 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
Development of KLS-13019 for Neuropathic Pain
开发用于治疗神经性疼痛的 KLS-13019
- 批准号:
10704175 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
Development of KLS-13019 for Neuropathic Pain
开发用于治疗神经性疼痛的 KLS-13019
- 批准号:
10704175 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
Development of KLS-13019 for Neuropathic Pain
开发用于治疗神经性疼痛的 KLS-13019
- 批准号:
10493291 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别: