Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements

从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络

基本信息

  • 批准号:
    10618963
  • 负责人:
  • 金额:
    $ 0.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-02 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary The World Health Organization estimates that over 65 million people suffer from moderate to severe chronic obstructive pulmonary disease, a condition characterized by poor airflow and restricted breathing 1. The ability to regenerate damaged lung tissue would dramatically improve the quality of life for these individuals while reducing the prevalence and burden of pulmonary diseases worldwide. A promising approach to this problem is to use human pluripotent stem cells to produce lung and airway progenitor cells. Indeed, specialized protocols have been developed to convert stem cells into definitive endoderm, a lung precursor cell type 10-19. These protocols use small molecules to modulate the expression of key regulators of lung development including WNT, TGFβ, BMP, and FGF; however, these protocols are limited by the inability to generate a homogeneous population of definitive endoderm cells 11,15. This problem necessitates a better mechanistic understanding of how individual cells transition from their pluripotent cell state into definitive endoderm. Specifically, there is a critical need to understand how the gene regulatory networks in a given cell control its morphogenesis, proliferation, and differentiation decisions. Therefore, with the long-term goal of increasing homogeneity in lung precursor cells, the research objective of this fellowship is to determine how transcriptional heterogeneity in human embryonic stem cells influences their commitment to definitive endoderm. I hypothesize that heterogeneity in the starting population of cells generates alternate trajectories to definitive endoderm (or other cell types) and that these differences increase over time due to mutual inhibition between specific pairs of transcription factors (e.g., OCT4/SOX17, NANOG/GATA6). To test this hypothesis, I will first use single-cell RNA sequencing26 to define the transcriptional heterogeneity in human pluripotent stem cells during differentiation to definitive endoderm. I will then quantify the time-dependent changes in gene expression for each cell using RNA velocity, a computational method that uses spliced and unspliced transcript counts to estimate future gene expression states 28-29. Using these single-cell measurements, I will then develop a mechanistic model of the gene regulatory networks governing differentiation to DE and validate the model using known gene-gene interactions. Model simulations will: (1) confirm major gene regulators that drive differentiation; (2) identify novel gene networks that control heterogeneity before and during differentiation; and (3) reveal crosstalk among gene regulatory networks governing differentiation and other ongoing cellular processes such as proliferation and metabolism. The proposed experimental and computational studies provide a general framework to systematically identify gene regulatory mechanisms controlling differentiation to definitive endoderm and aid in the development of more efficient and homogeneous differentiation/transdifferentiation protocols for regenerative cellular therapies.
项目概要 世界卫生组织估计,超过 6500 万人患有中度至重度慢性病 阻塞性肺病,一种以气流不畅和呼吸受限为特征的疾病 1. 能力 再生受损的肺组织将极大地改善这些人的生活质量,同时 减少全世界肺部疾病的患病率和负担是解决这一问题的有希望的方法。 是利用人类多能干细胞来产生肺和气道祖细胞,确实是专门的。 已开发出将干细胞转化为定形内胚层(肺前体细胞类型 10-19)的方案。 这些方案使用小分子来调节肺部发育关键调节因子的表达 包括 WNT、TGFβ、BMP 和 FGF;然而,这些协议由于无法生成 定形内胚层细胞的同质群体11,15 这个问题需要更好的机制。 了解单个细胞如何从多能细胞状态转变为定形内胚层。 具体来说,迫切需要了解给定细胞中的基因调控网络如何控制其 因此,长期目标是增加形态发生、增殖和分化。 肺前体细胞的同质性,该奖学金的研究目标是确定如何 人类胚胎干细胞的转录异质性影响其对最终决定性的承诺 我追寻的是起始细胞群的异质性会产生不同的轨迹。 定形内胚层(或其他细胞类型),并且由于相互抑制,这些差异随着时间的推移而增加 特定转录因子对之间(例如 OCT4/SOX17、NANOG/GATA6)。 将首先使用单细胞 RNA 测序26 来定义人类多能干细胞的转录异质性 然后我将量化基因随时间的变化。 使用RNA速度计算每个细胞的表达,这是一种使用剪接和未剪接转录本的计算方法 使用这些单细胞测量值来估计未来的基因表达状态 28-29。 开发控制分化为 DE 的基因调控网络的机制模型并验证 使用已知的基因-基因相互作用的模型模拟将:(1)确认驱动的主要基因调节因子。 分化;(2)识别分化前和分化过程中控制异质性的新基因网络; (3)揭示控制分化和其他正在进行的细胞的基因调控网络之间的串扰 所提出的实验和计算研究等过程。 提供一个通用框架来系统地识别控制分化的基因调控机制 定形内胚层并有助于更有效和均质的发育 再生细胞疗法的分化/转分化方案。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DELVE: feature selection for preserving biological trajectories in single-cell data.
DELVE:在单细胞数据中保存生物轨迹的特征选择。
  • DOI:
  • 发表时间:
    2024-03-29
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Ranek, Jolene S;Stallaert, Wayne;Milner, J Justin;Redick, Margaret;Wolff, Samuel C;Beltran, Adriana S;Stanley, Natalie;Purvis, Jeremy E
  • 通讯作者:
    Purvis, Jeremy E
Feature selection for preserving biological trajectories in single-cell data.
在单细胞数据中保存生物轨迹的特征选择。
  • DOI:
  • 发表时间:
    2023-05-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ranek, Jolene S;Stallaert, Wayne;Milner, Justin;Stanley, Natalie;Purvis, Jeremy E
  • 通讯作者:
    Purvis, Jeremy E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jolene Sarah Ranek其他文献

Jolene Sarah Ranek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jolene Sarah Ranek', 18)}}的其他基金

Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
  • 批准号:
    10544286
  • 财政年份:
    2021
  • 资助金额:
    $ 0.63万
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
  • 批准号:
    10697651
  • 财政年份:
    2023
  • 资助金额:
    $ 0.63万
  • 项目类别:
Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
  • 批准号:
    10697651
  • 财政年份:
    2023
  • 资助金额:
    $ 0.63万
  • 项目类别:
Inferring Gene Regulatory Networks Governing Definitive Endoderm Differentiation from Single Cell RNA Velocity Measurements
从单细胞 RNA 速度测量推断控制定形内胚层分化的基因调控网络
  • 批准号:
    10544286
  • 财政年份:
    2021
  • 资助金额:
    $ 0.63万
  • 项目类别:
Navigation with complex odor dynamics: computational principles and neural circuit implementation in mice
复杂气味动力学导航:计算原理和小鼠神经回路实现
  • 批准号:
    10417160
  • 财政年份:
    2020
  • 资助金额:
    $ 0.63万
  • 项目类别:
Navigation with complex odor dynamics: computational principles and neural circuit implementation in mice
复杂气味动力学导航:计算原理和小鼠神经回路实现
  • 批准号:
    10634677
  • 财政年份:
    2020
  • 资助金额:
    $ 0.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了