Flow, Fatty Acid Biosynthesis, and Hematopoiesis
流动、脂肪酸生物合成和造血
基本信息
- 批准号:10868960
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAnemiaAortaAttenuatedBindingBinding ProteinsBloodBlood VesselsBlood flowCell Fate ControlCell NucleusCellsDataDevelopmentDinoprostoneDiseaseDocosahexaenoic AcidsEicosanoidsEmbryonic DevelopmentEndothelial CellsEndotheliumEngineeringEngraftmentExposure toFatty AcidsFrictionFutureGenerationsGenesGenetic TranscriptionGonadal structureHematologic NeoplasmsHematological DiseaseHematologyHematopoiesisHematopoieticHematopoietic Stem Cell TransplantationHematopoietic stem cellsHumanImmuneImmune System DiseasesImpairmentIn VitroKnowledgeLiquid substanceLiteratureMesonephric structureMetabolic DiseasesMissionMolecularMolecular ChaperonesMorbidity - disease rateMusMutationNuclearOmega-3 Fatty AcidsOutcomeOutputPathway interactionsPatientsPhasePhysical condensationPilot ProjectsPolyunsaturated Fatty AcidsPopulationProceduresProliferatingProtein InhibitionPublic HealthPublicationsRegulatory ElementRegulatory PathwayResearchSCAP proteinScientistSignal TransductionSpecific qualifier valueSterolsSupplementationSystemTP53 geneTestingTherapeuticTranscription CoactivatorTranscriptional RegulationUmbilical Cord BloodUnited States National Institutes of HealthWorkZebrafishcell fate specificationcellular engineeringchemotherapycofactordisabilitydonor stem cellfatty acid biosynthesisheart functionhematopoietic cell transplantationhematopoietic stem cell emergencehematopoietic stem cell fatehemogenic endotheliumimmune functionimprovedin vivoinduced pluripotent stem cellirradiationlipid biosynthesislipid metabolismmechanical propertiesmortalitynoveloverexpressionprogramsprotein expressionreconstitutionresponseshear stressstem cellstranscription factor
项目摘要
(PLEASE KEEP IN WORD, DO NOT PDF)
Hematopoietic stem cells (HSCs), which give rise to the full spectrum of hematological cells in the blood, hold tremendous promise as future treatments for hematological and immunological diseases. For example, HSC transplantation can reconstitute the blood system following irradiation or chemotherapy, thus restoring immune function and improving anemia in patients undergoing such treatments. Furthermore, therapies that could modulate the regulatory pathways controlling cell fate could help treat metabolic disorders caused by unrestricted proliferation of HSCs and hematopoietic progenitor cells. Unfortunately, to date scientists have limited capability to expand multipotent HSCs ex vivo from cord blood. Even with sufficient HSCs, if they are not properly engrafted, transplanted HSCs can cause serious morbidity or mortality. Finally, compatibility challenges between HSC donors and recipients create additional difficulty. These challenges impede the broader application of hematopoietic cell transplantation procedures.
One attractive alternative is to generate HSCs in vitro using cell engineering. The overall objective of this application is to identify the key molecular mechanisms controlling HSC emergence during embryonic development. This knowledge can be harnessed to guide de novo generation of HSPCs in vitro. Preliminary results have led to the rationale that fatty acid biosynthesis–activated by shear stress imposed on the vascular wall–dictates hematopoietic development. These pilot studies have revealed a novel flow-regulated lipid metabolism program orchestrating hematopoiesis. Based on rigorous preliminary research and previous publications by this team and others, the central hypothesis is that endogenous fatty acid biosynthesis facilitates HSPC fate commitment from human-induced pluripotent stem cells. The central hypothesis will be investigated through two specific aims that will examine whether the natural fatty acid synthesis program controls HSPC fate specification from human-induced pluripotent stem cells. Upon completion of this work, the results will define a critical flow-regulated lipid metabolism pathway that instructs definitive hematopoiesis.
(请以 WORD 形式保存,请勿以 PDF 形式保存)
造血干细胞(HSC)在血液中产生全谱的血液细胞,作为未来血液和免疫疾病的治疗方法具有巨大的前景,例如,HSC 移植可以在放射或化疗后重建血液系统,从而恢复免疫。此外,能够调节控制细胞命运的调节途径的疗法可以帮助治疗由 HSC 和造血不受限制增殖引起的代谢紊乱。不幸的是,迄今为止,科学家从脐带血中离体扩增多能 HSC 的能力有限,即使有足够的 HSC,如果移植不当,移植的 HSC 也会导致严重的发病或死亡。这些挑战阻碍了造血细胞移植手术的更广泛应用。
一种有吸引力的替代方案是利用细胞工程在体外生成 HSC,该应用的总体目标是确定胚胎发育过程中控制 HSC 出现的关键分子机制,可利用这一知识来指导体外生成 HSPC。得出的基本原理是,由施加在血管壁上的剪切应力激活的脂肪酸生物合成决定造血发育,这些试点研究揭示了一种新的流量调节脂质代谢程序的协调。基于该团队和其他人的严格初步研究和之前的出版物,中心假设是内源性脂肪酸生物合成促进人类诱导多能干细胞的 HSPC 命运决定。该中心假设将通过两个具体目标进行研究。天然脂肪酸合成程序是否控制人诱导多能干细胞的 HSPC 命运规范。完成这项工作后,结果将定义一个关键的流量调节脂质代谢途径,指导明确的。造血作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Longhou Fang其他文献
Longhou Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Longhou Fang', 18)}}的其他基金
AIBP Mediates a Novel Interplay between Cholesterol Metabolism and Lymphangiogenesis
AIBP 介导胆固醇代谢和淋巴管生成之间的新相互作用
- 批准号:
9247254 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
AIBP-Mediated Cholesterol Efflux and Angiogenesis
AIBP 介导的胆固醇流出和血管生成
- 批准号:
8929458 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
AIBP-Mediated Cholesterol Efflux and Angiogenesis
AIBP 介导的胆固醇流出和血管生成
- 批准号:
9178668 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
AIBP-Mediated Cholesterol Efflux and Angiogenesis
AIBP 介导的胆固醇流出和血管生成
- 批准号:
8528713 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
AIBP-mediated Cholesterol Efflux and Angiogenesis
AIBP 介导的胆固醇流出和血管生成
- 批准号:
8353288 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
BeAn 58058病毒影响cofilin 1功能介导重型再生障碍性贫血患者髓样树突状细胞激活及其机制的研究
- 批准号:82300239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
影响α地中海贫血表型严重性的PIP4K2A基因变异的鉴定及机制研究
- 批准号:82370122
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
骨髓树突状细胞TLR1/2/8-MyD88通路在再生障碍性贫血发生发展中的作用
- 批准号:82370142
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
限食通过下调MS4A3促进红细胞生成的机制研究及其在贫血人群中的临床运用
- 批准号:82360027
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
红系造血岛巨噬细胞TLR8信号激活在再生障碍性贫血中机制研究
- 批准号:82370144
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8665423 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8307775 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8477187 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8163028 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Glycation inactivation of human CD59 and diabetic complications
人 CD59 的糖基化失活和糖尿病并发症
- 批准号:
8492276 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别: