Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
基本信息
- 批准号:10877549
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyAreaAtlasesAuditory areaAxonBiological ModelsBrainBrain MappingBrain imagingCalciumCellsCognitionComplexDataData SetDecision MakingDetectionDevelopmentElectron MicroscopyEuropeanFunctional ImagingGenerationsGeometryGoalsHolographyHumanImageImaging TechniquesImaging technologyIndividualLabelLengthMachine LearningMapsMediatingMental disordersMorphologyMusNeocortexNeuronsNeurosciencesOutcomeParietal LobePerformanceProtocols documentationReporterResolutionRoentgen RaysSamplingSensorySoftware ToolsSourceSpeedStainsSynapsesSynchrotronsTechniquesTissue SampleTissuesTrainingVisual CortexVisualizationWorkX-Ray Medical Imaginganatomic imagingbeamlinecognitive functionconvolutional neural networkdeep learningdetectorexperimental studyhigh resolution imagingimage reconstructionimaging approachimaging capabilitiesimaging modalityimprovedin vivoinsightlight microscopymachine visionmicroscopic imagingmillimetermultimodal datamultisensorynanonanoimagingnanoscaleneocorticalneural circuitneuronal circuitryreconstructionsample fixationsegmentation algorithmsensorsensory inputsoftware developmentsupport networktooltwo-photonwhite matter
项目摘要
Project Summary
This proposal's objective is to develop synchrotron-based X-ray imaging technologies to enable high-resolution imaging
of brain-wide neuronal circuits. Comprehensively mapping brain-wide circuits is not currently feasible, even in small
mammalian model systems, because light microscopy (LM) lacks sufficient resolution and electron microscopy (EM)
cannot be applied over large volumes. Leveraging the unprecedented qualities of the new 4th generation synchrotron
source at the European Synchrotron, we will develop X-ray nano-holography (XNH) imaging techniques for large-scale
imaging of brain circuits. Taking advantage of improvements in source coherence and brightness, we will improve
imaging resolution to allow direct visualization of synaptic connections between neurons, and develop imaging protocols
that allow imaging of centimeter-scale circuit volumes within a typical beamline experiment. We will combine non-
destructive XNH with EM and LM imaging techniques to rigorously and quantitatively validate the accuracy of XNH-
based circuit reconstruction. We will then use this correlative workflow to study the relationships between long-range
sensory inputs, local synaptic micro-circuitry, and single-neuron activity, investigating how circuits in the posterior
parietal cortex (PPC) support perceptual decision-making. Lastly, we will apply XNH circuit-mapping over an entire
cortical hemisphere, and utilize deep-learning based machine vision algorithms to obtain a comprehensive atlas of cortical
connectivity. This atlas will in principle resolve all long-range connections between cortical areas at single-axon
resolution, lending insight into how distinct cortical areas achieve specialized function, and how distributed cortical
networks support cognition and are affected by psychiatric disorders.
项目概要
该提案的目标是开发基于同步加速器的 X 射线成像技术,以实现高分辨率成像
全脑神经元回路。全面绘制全脑回路目前还不可行,即使是在小范围内
哺乳动物模型系统,因为光学显微镜 (LM) 和电子显微镜 (EM) 缺乏足够的分辨率
不能大量应用。利用全新第四代同步加速器前所未有的品质
欧洲同步加速器的来源,我们将开发用于大规模的X射线纳米全息(XNH)成像技术
脑回路成像。利用光源相干性和亮度的改进,我们将改进
成像分辨率,允许直接可视化神经元之间的突触连接,并开发成像协议
允许在典型的光束线实验中对厘米级电路体积进行成像。我们将结合非
使用 EM 和 LM 成像技术来严格定量验证 XNH 的准确性
基于电路重构。然后,我们将使用这个相关工作流程来研究远程之间的关系
感觉输入、局部突触微电路和单神经元活动,研究后部电路如何
顶叶皮层(PPC)支持感知决策。最后,我们将在整个电路上应用 XNH 电路映射
大脑半球,利用基于深度学习的机器视觉算法获得大脑半球的综合图谱
连接性。该图谱原则上将解决单轴突皮质区域之间的所有远程连接
分辨率,有助于深入了解不同的皮质区域如何实现专门的功能,以及分布式皮质区域如何
网络支持认知并受到精神疾病的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Kuan其他文献
Aaron Kuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Kuan', 18)}}的其他基金
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10454403 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10282498 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
- 批准号:
10696658 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Neuroanatomically informed biomarker discovery and neurofeedback intervention for OCD
基于神经解剖学的生物标志物发现和强迫症的神经反馈干预
- 批准号:
10739000 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Non-Pharmacologic Approach to Rhythm Control and Rate Control of Postoperative Atrial Fibrillation.
术后心房颤动节律控制和心率控制的非药物方法。
- 批准号:
10625696 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别: