Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
基本信息
- 批准号:10584324
- 负责人:
- 金额:$ 53.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAffectAlgorithmsAnatomyAreaArtificial IntelligenceAttentionBRAIN initiativeBehavior DisordersBehavioralBrainBrain MappingBrain imagingBrain scanClinical ProtocolsDataData SetDatabasesDevelopmentDiagnosisDiffusionDiffusion Magnetic Resonance ImagingDimensionsDiseaseEvaluationFaceFour-dimensionalFunctional Magnetic Resonance ImagingFutureHealth Care CostsHealthcareHealthcare SystemsHumanImageIndividualLearningMRI ScansMagnetic Resonance ImagingMapsMeasuresMemoryMental disordersMethodologyMethodsMinnesotaModelingMorphologic artifactsNeurologicNeuronsPathologyPatientsPerformancePhysicsPlayProcessProtocols documentationPsyche structureRecoveryResearchResolutionRoleSamplingScanningSeriesSpeedStructureSupervisionSymptomsTechniquesTechnologyTimeTrainingTranslationsUncertaintyUnited StatesUniversitiesValidationWorkbrain magnetic resonance imagingconnectomedata spacedeep learningdenoisingdiagnostic valuedisabilitydisability-adjusted life yearsimage processingimage reconstructionimaging modalityimprovedlearning strategymillimeternervous system disorderneural networkneuropsychiatrynovelpalliativerapid techniquereconstructionspatiotemporalsupervised learningtechnology developmenttheoriestoolyears of life lost
项目摘要
PROJECT SUMMARY/ABSTRACT
Neuropsychiatric (mental, behavioral and neurological) disorders are increasingly dominating the burden on
US healthcare. Yet, our understanding of such disorders is largely restricted to a description of symptoms, and
the treatments remain palliative. Several large-scale efforts, including the Human Connectome Project (HCP)
and the BRAIN Initiative call for the development of technologies to map brain circuits to improve our
understanding of brain function. Magnetic resonance imaging (MRI) plays a central role in these initiatives as a
powerful non-invasive methodology to study the human brain, including anatomical, functional and diffusion
imaging. Yet, MRI methods have major limitations on achievable resolutions and acquisition speed. These
affect both high resolution whole brain acquisitions that aim to image voxel volumes that contain only a few
thousand neurons for improved understanding of the brain, and also the more commonly utilized research and
clinical protocols. This, in turn, necessitates improved reconstruction methods to facilitate faster acquisitions.
Several strategies have been proposed for improved reconstruction of MRI data. Recently, deep learning (DL)
has emerged as an alternative for accelerated MRI showing improved quality over conventional approaches.
However, it also faces challenges that hinder its utility, especially in high-resolution brain MRI, including need
for large databases of reference data for training, concerns about generalization to unseen pathologies not
well-represented in training datasets, robustness issues related to recovery of fine structures, and difficulties in
training networks for processing multi-dimensional image series. In this proposal, we will develop and validate
robust and efficient learning strategies for high-resolution brain DL MRI reconstruction without large databases
of reference data. We will develop self-supervised learning methods for training with small referenceless
databases or in a scan-specific manner. We will augment these with uncertainty-guided training strategies for
improved recovery of areas with high uncertainty, methods for synergistically combining random matrix theory
based denoising with DL reconstruction, and memory-efficient distributed learning techniques to process large
image series. Our developments will enable at least a two-fold improvement in acceleration rates over existing
protocols, and at higher resolutions. They will be validated on HCP-style acquisitions with extensive
anatomical, functional and microstructural evaluation at multiple resolutions. Finally, we will curate a whole
brain sub-millimeter HCP-style database for studying functional and structural connectivity at the level cortical
layers and columns, while also facilitating technical developments for new modeling, image processing and
reconstruction algorithms. Successful completion of this project has the potential to transform the scales that
can be imaged with MRI, improve the quality of existing protocols and/or significantly reduce scan times,
leading to reductions in healthcare costs, improved diagnosis and/or increased patient throughput.
项目概要/摘要
神经精神(精神、行为和神经)疾病日益成为人们的负担
美国医疗保健。然而,我们对此类疾病的理解很大程度上仅限于症状的描述,并且
治疗仍然是姑息治疗。多项大规模工作,包括人类连接组计划 (HCP)
BRAIN Initiative 呼吁开发绘制大脑回路的技术,以改善我们的大脑
了解大脑功能。磁共振成像 (MRI) 在这些举措中发挥着核心作用
强大的非侵入性方法来研究人脑,包括解剖学、功能和扩散
成像。然而,MRI 方法在可实现的分辨率和采集速度方面存在重大限制。这些
影响高分辨率全脑采集,其目的是对仅包含少数的体素体积进行成像
数千个神经元,以提高对大脑的理解,以及更常用的研究和
临床方案。反过来,这需要改进重建方法以促进更快的采集。
已经提出了几种改进 MRI 数据重建的策略。最近,深度学习(DL)
已成为加速 MRI 的替代方案,显示出比传统方法更高的质量。
然而,它也面临着阻碍其实用性的挑战,特别是在高分辨率脑部 MRI 方面,包括需要
对于用于训练的大型参考数据数据库,不关心对看不见的病理的泛化
在训练数据集中得到很好的体现,与精细结构恢复相关的鲁棒性问题以及
用于处理多维图像系列的训练网络。在此提案中,我们将开发并验证
无需大型数据库即可实现高分辨率大脑 DL MRI 重建的稳健且高效的学习策略
的参考数据。我们将开发自我监督学习方法,用于小无参考的训练
数据库或以扫描特定的方式。我们将通过不确定性引导的培训策略来增强这些
改进高不确定性区域的恢复,协同结合随机矩阵理论的方法
基于深度学习重建的去噪,以及内存高效的分布式学习技术来处理大数据
图像系列。我们的开发将使加速度比现有技术至少提高两倍
协议,并且分辨率更高。它们将在 HCP 式的收购中得到广泛的验证
多种分辨率下的解剖、功能和微观结构评估。最后我们会整理出一个完整的
大脑亚毫米 HCP 型数据库,用于研究皮质水平的功能和结构连接
层和列,同时还促进新建模、图像处理和
重建算法。该项目的成功完成有可能改变规模
可以通过 MRI 成像,提高现有协议的质量和/或显着减少扫描时间,
从而降低医疗成本、改善诊断和/或增加患者吞吐量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehmet Akcakaya其他文献
Mehmet Akcakaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehmet Akcakaya', 18)}}的其他基金
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10171902 - 财政年份:2020
- 资助金额:
$ 53.06万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10601056 - 财政年份:2020
- 资助金额:
$ 53.06万 - 项目类别:
Novel Quantitative MRI Techniques for the Assessment of Cardiac Fibrosis without Gadolinium Contrast
无需钆对比即可评估心脏纤维化的新型定量 MRI 技术
- 批准号:
9977670 - 财政年份:2020
- 资助金额:
$ 53.06万 - 项目类别:
Novel Quantitative MRI Techniques for the Assessment of Cardiac Fibrosis without Gadolinium Contrast
无需钆对比即可评估心脏纤维化的新型定量 MRI 技术
- 批准号:
10319011 - 财政年份:2020
- 资助金额:
$ 53.06万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10030978 - 财政年份:2020
- 资助金额:
$ 53.06万 - 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:
10383694 - 财政年份:2020
- 资助金额:
$ 53.06万 - 项目类别:
Novel Accelerated Contrast-Enhanced High Resolution Coronary MRI
新型加速对比增强高分辨率冠状动脉 MRI
- 批准号:
8848174 - 财政年份:2012
- 资助金额:
$ 53.06万 - 项目类别:
Novel Accelerated Contrast-Enhanced High Resolution Coronary MRI
新型加速对比增强高分辨率冠状动脉 MRI
- 批准号:
8224036 - 财政年份:2012
- 资助金额:
$ 53.06万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
食欲素2型受体通过影响BACE2功能增加脑内Aβ产生加速阿尔茨海默病发生发展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PRAS40通过促进G6PI/PGK1/LDHA复合物的组装加速糖酵解进程对结直肠癌发生的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流相互作用区对太阳高能粒子加速和传输过程的影响
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
下游边界对磁重联出流区电子加速的影响
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 53.06万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 53.06万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 53.06万 - 项目类别:
Primary cell culture models of HIV/HBV co-infection
HIV/HBV合并感染的原代细胞培养模型
- 批准号:
10762093 - 财政年份:2023
- 资助金额:
$ 53.06万 - 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 53.06万 - 项目类别: