A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
基本信息
- 批准号:10908073
- 负责人:
- 金额:$ 50.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AnimalsApoptosisBRAF geneBenchmarkingBiological AssayBiologyCancer EtiologyCancer ModelCellsCessation of lifeChemical ModifierChemicalsChemistryClinicalColorectal CancerComplexComputer ModelsDataDevelopmentDiagnosisDiseaseDrosophila genusDrug DesignDrug KineticsEpidermal Growth Factor ReceptorExcretory functionFDA approvedGenesGeneticGenetic ScreeningGoalsHalf-LifeHumanImmunotherapyIn VitroKRAS2 geneLeadLibrariesMalignant NeoplasmsMapsMediatingMetabolismModelingModificationMonomeric GTP-Binding ProteinsMusNatureNeoplasm MetastasisOncogenicPatientsPharmaceutical PreparationsPharmacotherapyPhosphotransferasesPrimary carcinoma of the liver cellsPropertyProtein IsoformsRAF1 geneRefractorySeriesSignal TransductionStructureStructure-Activity RelationshipSurvival RateTP53 geneTestingTherapeuticTherapeutic IndexTimeToxic effectTreatment EfficacyUnited StatesVariantXenograft ModelXenograft procedureabsorptionanalogaurora kinase Achemical geneticscolon cancer cell linecolon cancer patientscomparativecostdesigndrug developmentflygastrointestinalgenetic analysisgenetic approachimprovedin vivoinhibitorinnovationinsightinterdisciplinary approachkinase inhibitormetastatic colorectalmortalitymutantneoplastic cellnetwork attacknovelnovel therapeutic interventionnovel therapeuticspatient derived xenograft modelside effectsmall moleculestructural biologytumortumor growthtumor initiation
项目摘要
Project Summary
Metastatic colorectal cancer (mCRC) is the second leading cause of cancer-related mortality in the United
States, and annually accounts for nearly 500,000 deaths worldwide. Currently, the small molecule kinase
inhibitor (KI) regorafenib is the primary second line therapy for metastatic CRC that is not treatable with
immunotherapy or anti-EGFR therapies. However, regorafenib generally provides only modest improvements in
survival— typically months—and often at the cost of significant side effects. Proposed targets for regorafenib
include kinases that act within tumor cells as well as non-autonomously; however, with over 500 possible targets
in the human kinome, the exact mechanism by which this compound operates remains controversial and not
fully known. This presents a daunting challenge; without a verifiable target or mechanism, no clear path exists
to guide the development of improved therapies for mCRC.
Here, we propose an alternative approach to drug development that focuses on kinase networks in the
context of the whole animal. Specifically, we will take a multidisciplinary approach to define kinases that are
beneficial to inhibit (‘pro-targets’) or avoid (‘anti-targets’) in the context of KRAS-variant CRC. Using Drosophila
and mammalian models, we will identify kinases that—when reduced—alter the efficacy of regorafenib and
similar compounds. We will also conduct extensive structure-activity relationship analyses, evaluating how
modifications in already identified lead compounds impact changes in efficacy and therapeutic index. Finally, we
will use computational structural biology to convert our chemical genetic insights into highly optimized and
precise polypharmacological leads. In this final step, we generate new analogs to selectively eliminate putative
anti-target activity while maintaining or increasing inhibitory activity against other beneficial targets.
We have used our chemical genetic platform to identify a promising lead compound, APS5-86-2, that
demonstrates significant activity relative to regorafenib in several mCRC models, including human patient
derived xenografts (PDX). Comparative analysis suggests that the improved activity of APS5-86-2 relative to
regorafenib derives from distinct polypharmacology on several RTKs and critical cancer drivers, including CDK9,
AURKA, EGFR, BRAF, and RAF1. In this proposal, we examine the mechanism and importance of these and
other putative pro- and anti-target kinases using genetic analysis and in vivo target engagement. The objective
is to identify the kinase networks that mediate KRAS-variant mCRC by combining chemical biology with genetics,
and to then derive inhibitors that best attack these networks through structure-based drug design. We have been
successful previously with a similar approach, but in less complex tumor models (Dar et al., Nature, 2012;
Sonoshita et al., Nature Chem. Bio., 2018); here we seek to extend our platform to a more prevalent disease
with the goal of directly impacting mCRC by creating new, highly differentiated, and improved drugs.
项目概要
转移性结直肠癌 (mCRC) 是美国癌症相关死亡的第二大原因
目前,小分子激酶每年导致全球近 50 万人死亡。
抑制剂 (KI) 瑞戈非尼是治疗无法用药物治疗的转移性 CRC 的主要二线疗法
然而,瑞戈非尼通常只能提供适度的改善。
生存期(通常为几个月),并且通常以显着副作用为代价。
包括在肿瘤细胞内发挥作用的激酶以及非自主作用的激酶,有超过 500 个可能的靶点;
在人类激酶组中,这种化合物起作用的确切机制仍然存在争议,并且不存在
众所周知,这是一个艰巨的挑战;如果没有可验证的目标或机制,就不存在明确的道路。
指导 mCRC 改良疗法的开发。
在这里,我们提出了一种药物开发的替代方法,重点关注激酶网络
具体来说,我们将采用多学科方法来定义激酶。
在使用果蝇的 KRAS 变异 CRC 中,有利于抑制(“前靶标”)或避免(“反靶标”)。
和哺乳动物模型,我们将鉴定出激酶,当其减少时,会改变瑞戈非尼的功效,
我们还将进行广泛的结构-活性关系分析,评估如何进行。
最后,我们对已确定的先导化合物进行修改会影响功效和治疗指数的变化。
将利用计算结构生物学将我们的化学遗传见解转化为高度优化和
在最后一步中,我们生成新的类似物以选择性地消除假定的。
抗靶标活性,同时维持或增加针对其他有益靶标的抑制活性。
我们利用我们的化学遗传平台鉴定了一种有前途的先导化合物 APS5-86-2,
在多种转移性结直肠癌模型(包括人类患者)中表现出相对于瑞戈非尼的显着活性
比较分析表明,APS5-86-2 的活性相对于 PDX 有所提高。
瑞戈非尼源自多种 RTK 和关键癌症驱动因素的独特多药理学,包括 CDK9、
AURKA、EGFR、BRAF 和 RAF1 在本提案中,我们研究了它们的机制和重要性。
使用遗传分析和体内靶点参与的其他推定的亲靶点和抗靶点激酶。
是通过结合化学生物学和遗传学来识别介导 KRAS 变异 mCRC 的激酶网络,
然后通过基于结构的药物设计衍生出最能攻击这些网络的抑制剂。
以前使用类似的方法取得了成功,但在不太复杂的肿瘤模型中(Dar 等人,Nature,2012;
Sonoshita 等人,Nature Chem.,2018);我们寻求将我们的平台扩展到更普遍的疾病
目标是通过创造新的、高度差异化和改进的药物来直接影响转移性结直肠癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Leigh Cagan其他文献
Ross Leigh Cagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross Leigh Cagan', 18)}}的其他基金
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10182641 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10359839 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10600844 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
A Cytochrome P450 Therapeutic Space for Tauopathies
Tau蛋白病的细胞色素 P450 治疗空间
- 批准号:
10461317 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
A New Disease Platform Leveraging Complex Drosophila and Mammalian Models
利用复杂果蝇和哺乳动物模型的新疾病平台
- 批准号:
9118383 - 财政年份:2015
- 资助金额:
$ 50.42万 - 项目类别:
A New Disease Platform Leveraging Complex Drosophila and Mammalian Models
利用复杂果蝇和哺乳动物模型的新疾病平台
- 批准号:
9306960 - 财政年份:2015
- 资助金额:
$ 50.42万 - 项目类别:
A Drosophila Model Linking Diet-induced Obesity and Cancer (PQ 1)
将饮食引起的肥胖与癌症联系起来的果蝇模型 (PQ 1)
- 批准号:
8534067 - 财政年份:2012
- 资助金额:
$ 50.42万 - 项目类别:
A Drosophila Model Linking Diet-induced Obesity and Cancer (PQ 1)
将饮食引起的肥胖与癌症联系起来的果蝇模型 (PQ 1)
- 批准号:
8677826 - 财政年份:2012
- 资助金额:
$ 50.42万 - 项目类别:
A Drosophila Model Linking Diet-induced Obesity and Cancer (PQ 1)
将饮食引起的肥胖与癌症联系起来的果蝇模型 (PQ 1)
- 批准号:
8383704 - 财政年份:2012
- 资助金额:
$ 50.42万 - 项目类别:
A Drosophila Model Linking Diet-induced Obesity and Cancer (PQ 1)
将饮食引起的肥胖与癌症联系起来的果蝇模型 (PQ 1)
- 批准号:
8870186 - 财政年份:2012
- 资助金额:
$ 50.42万 - 项目类别:
相似国自然基金
内质网应激通过m6A甲基化调控牛卵巢颗粒细胞坏死性凋亡机制研究
- 批准号:32372887
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤特异性转录本MARCO-TST通过调控AIF核转位抑制细胞凋亡介导HER2阳性乳腺癌治疗耐药的机制研究
- 批准号:82303808
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑微血管内皮细胞来源外泌体YY1靶向MARK4激活Hippo信号通路促进神经元凋亡导致缺血性脑卒中神经损伤的机制研究
- 批准号:82301496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PCN/HA光催化促进凋亡成纤维细胞胞葬清除在祛除颌面增生性瘢痕中的作用及机制研究
- 批准号:82301052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负压诱导下自体外周血单核细胞来源的凋亡囊泡对颞下颌关节骨关节炎的临床治疗研究
- 批准号:82370985
- 批准年份:2023
- 资助金额:70 万元
- 项目类别:面上项目
相似海外基金
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10182641 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10359839 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10600844 - 财政年份:2021
- 资助金额:
$ 50.42万 - 项目类别:
The Role of Stromal Autophagy in Cutaneous Melanoma
基质自噬在皮肤黑色素瘤中的作用
- 批准号:
10441457 - 财政年份:2018
- 资助金额:
$ 50.42万 - 项目类别:
The Role of Stromal Autophagy in Cutaneous Melanoma
基质自噬在皮肤黑色素瘤中的作用
- 批准号:
10441457 - 财政年份:2018
- 资助金额:
$ 50.42万 - 项目类别: