Dissecting the structural origin of relaxation in skeletal muscle
剖析骨骼肌松弛的结构起源
基本信息
- 批准号:10567284
- 负责人:
- 金额:$ 58.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseActinsAnimalsAreaBindingBiochemicalBone structureCardiacCollaborationsConsumptionContractsCryoelectron MicroscopyDNA Sequence AlterationDiseaseDrug TargetingEnergy consumptionEquilibriumExhibitsFiberFilamentH-MeromyosinHeadHumanImpairmentLaboratoriesLifeMLL geneMeasuresMicroscopeModelingMolecularMolecular ConformationMolecular MotorsMotorMovementMusMuscleMuscle ContractionMuscle functionMuscle relaxation phaseMyopathyMyosin ATPaseOryctolagus cuniculusPharmaceutical PreparationsPharmacotherapyProteinsRelaxationResolutionRoleSideSkeletal MuscleSlideStructureTailTestingTherapeuticThickThick FilamentThin FilamentWorkX ray diffraction analysisantagonistconnectininsightparticlerepairedskeletal
项目摘要
How muscle contracts has been a long-standing question. Despite major advances in this area, how
muscle relaxes is still not fully understood. Contraction occurs by the sliding of myosin-containing thick past
actin-containing thin filaments, powered by myosin heads, motors that produce sliding force, fueled by ATP.
Relaxation occurs when thin filaments are switched off so heads cannot bind to produce force, leaving the idling
heads to organize themselves helically in the thick filament. What is currently known about the role of thick
filaments in relaxation? On the structural side, low-resolution models of cardiac (mouse, human) and skeletal
(tarantula) thick filaments have been achieved, but their atomic structure remains unsolved. On the energetics
side, the energy consumption of relaxed skeletal muscle revealed a surprising phenomenon, so-called super-
relaxation (SRX) that greatly reduces ATP consumption. A widely accepted view associates this ubiquitous and
fundamental energy-saving state with the unique way myosin’s two heads fold together in the relaxed tarantula
filament—the so-called interacting-heads motif (IHM), found across the animal kingdom, which structurally
inhibits both heads, switching off their activity. Regardless of its appeal, this SRX=IHM hypothesis has not been
proved, and recent ATP turnover results suggest, instead, association of SRX with a specific myosin head
conformation. Elucidating this puzzle is crucial to understanding how muscle relaxes, how it malfunctions in
disease and how therapeutic drug treatments work. The solution requires determination by cryo-EM of the atomic
structures of the thick filament and myosin molecules from muscle. Here, we propose to determine the structures
of skeletal myosin molecules and filaments, far less studied than cardiac. This will allow us to dissect how key
IHM interactions constrain activity of the two heads, shutting them off, thus conserving ATP in relaxation. We will
use single particle EM and cryo-EM to define the structural basis of the SRX state at near-atomic level in thick
filaments and myosin molecules from rabbit skeletal muscle. By comparing with tarantula, which shows tenfold-
greater energy-saving (hyper-relaxation, HRX), we will gain deeper insight into the mechanism of ATPase
inhibition. And we will use EM and X-ray diffraction to investigate how therapeutic drugs alter the IHM.
Aim 1 will define the structural basis of SRX in skeletal thick filaments by revealing their near-atomic
cryo-EM structures. Aim 2 will define the structural basis of SRX in skeletal myosin heads and heavy meromyosin
molecules by assessing: (A) if SRX results from a specific head conformation, and (B) if the IHM correlates with
the SRX state. Aim 3 will reveal the structural impact of drugs on skeletal thick filaments and myosin molecules.
Despite the vital role of SRX in skeletal muscle relaxation, its structural basis and relation to the IHM and
to other thick filament proteins (MyBP-C, titin) remains unknown. Our studies will reveal the IHM structure in
skeletal thick filaments and myosin molecules, clarify its association with the SRX state and with MyBP-C and
titin, and provide critical insights into the molecular basis of relaxation and the influence of therapeutic drugs.
肌肉如何收缩一直是一个长期存在的问题,尽管在这一领域取得了重大进展,但肌肉如何收缩却是一个长期存在的问题。
肌肉放松是通过含有厚厚的肌球蛋白的滑动而发生的,目前尚不完全清楚。
含有肌动蛋白的细丝,由肌球蛋白头提供动力,肌球蛋白头是产生滑动力的马达,由 ATP 提供燃料。
当细丝关闭时,就会发生松弛,因此头部无法结合产生力,从而导致空转
目前已知粗丝的作用是什么。
在结构方面,心脏(小鼠、人类)和骨骼的低分辨率模型
(狼蛛)粗丝已经实现,但其原子结构在能量学上仍未解决。
另一方面,放松骨骼肌的能量消耗揭示了一个令人惊讶的现象,即所谓的超
一种广泛接受的观点认为,这种放松(SRX)可以大大减少 ATP 的消耗。
在放松的狼蛛中,肌球蛋白的两个头以独特的方式折叠在一起,从而达到基本的节能状态
细丝——所谓的相互作用头基序(IHM),在整个动物界都有发现,其结构
抑制两个头部,关闭它们的活动,无论其吸引力如何,这种 SRX=IHM 假设尚未得到证实。
事实证明,最近的 ATP 周转结果表明,SRX 与特定的肌球蛋白头有关联
阐明这个谜题对于理解肌肉如何放松以及它如何发生故障至关重要。
该解决方案需要通过原子冷冻电镜来确定。
在这里,我们建议确定肌肉的粗丝和肌球蛋白分子的结构。
骨骼肌球蛋白分子和细丝的研究远少于心脏,这将使我们能够剖析其中的关键。
IHM 相互作用限制两个头部的活动,关闭它们,从而在放松状态下保存 ATP。
使用单粒子 EM 和冷冻电镜来定义厚层中近原子水平 SRX 态的结构基础
兔子骨骼肌的细丝和肌球蛋白分子与狼蛛相比,显示出十倍-
更大的节能(超放松,HRX),我们将更深入地了解ATPase的机制
我们将使用 EM 和 X 射线衍射来研究治疗药物如何改变 IHM。
目标 1 将通过揭示其近原子结构来定义骨骼粗丝中 SRX 的结构基础
目标 2 将定义骨骼肌球蛋白头和重肌球蛋白中 SRX 的结构基础。
通过评估以下因素来评估分子:(A) SRX 是否由特定头部构象产生,以及 (B) IHM 是否与
SRX 状态将揭示药物对骨骼粗丝和肌球蛋白分子的结构影响。
尽管 SRX 在骨骼肌松弛中起着至关重要的作用,但它的结构基础以及与 IHM 和
与其他粗丝蛋白(MyBP-C、肌联蛋白)的关系仍然未知,我们的研究将揭示 IHM 结构。
骨骼粗丝和肌球蛋白分子,阐明其与 SRX 状态以及 MyBP-C 和
肌动蛋白,并为放松的分子基础和治疗药物的影响提供重要的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul Padron其他文献
Raul Padron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul Padron', 18)}}的其他基金
Structural basis of the super-relaxed state in human cardiac muscle
人体心肌超松弛状态的结构基础
- 批准号:
10634701 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
Structural basis of the super-relaxed state in human cardiac muscle
人体心肌超松弛状态的结构基础
- 批准号:
10502114 - 财政年份:2022
- 资助金额:
$ 58.37万 - 项目类别:
相似国自然基金
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
- 批准号:
10778103 - 财政年份:2023
- 资助金额:
$ 58.37万 - 项目类别:
Novel MYBPC1 mutations cosegregate with a myopathy associated with muscle weakness, hypotonia and tremor
新型 MYBPC1 突变与肌无力、肌张力减退和震颤相关的肌病共分离
- 批准号:
10693128 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别:
Molecular Mechanisms of Hair Bundle Development and Maintenance
发束发育和维护的分子机制
- 批准号:
10643931 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别:
Novel MYBPC1 mutations cosegregate with a myopathy associated with muscle weakness, hypotonia and tremor
新型 MYBPC1 突变与肌无力、肌张力减退和震颤相关的肌病共分离
- 批准号:
10470181 - 财政年份:2020
- 资助金额:
$ 58.37万 - 项目类别: