Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
基本信息
- 批准号:10778103
- 负责人:
- 金额:$ 66.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAcoustic StimulationActinsAddressAgeAgingAnimalsAuditoryBiophysicsBrainBuffersCalciumCellsCharacteristicsCochleaCoupledDataData SetEndolymphFoundationsFrequenciesGenerationsGenetic DiseasesGoalsHairHair CellsImageIndividualInner Hair CellsInterventionInvestigationIon Channel GatingKineticsLabyrinthLinkLiquid substanceLocationMechanical StimulationMechanicsModelingMolecularMonitorMorphologyMotionMotorMusNoiseOrganOrgan ModelOrganellesOuter Hair CellsPhosphatidylinositol 4,5-DiphosphatePhysiologicalPositioning AttributePredispositionPrevention therapyProcessPropertyProtocols documentationRanaRattusReceptor CellReportingRoleRotationSaccule structureSensorySensory HairShapesSignal PathwaySignal TransductionSiteSpeedStereociliumStimulusTechnologyTestingTranslatingTurtlesUsher SyndromeWorkantagonistbiophysical propertiescell typechannel blockersexperimental studygenetic manipulationinsightmechanical propertiesreceptorresponserestorationsynergismtectorial membranetheoriestherapy designtongue papillavoltage
项目摘要
Abstract: Auditory and vestibular sensory cells use the hair bundle, a stair-cased array of actin filled
stereocilia, to translate mechanical motion into an electrical signal. Mechanically-gated (MET) ion channels
located at the tips of shorter stereocilia are activated by force created by the pulling of a tip link that extends
between stereocilia. As sensory hair bundles are a major site for both genetic disorders like Ushers syndrome
and are also susceptible to damage from noise and aging, understanding how these bundles operate is critical
to designing therapies for prevention and restoration of function. Mammalian cochlear hair bundles have unusual
morphologies and interstereocilia connectivity that is not as tight as other inner ear end organs. There is
considerable debate as to the mechanisms underlying processes impacting MET currents and hair bundle
mechanics, like fast and slow adaptation, gating compliance and voltage driven responses. There is further
controversy over whether we truly have causal links between MET current responses and mechanical, molecular
mechanisms. Before being able to use the power of genetic manipulation of newly identified MET molecules, we
need a clear understanding of hair bundle biophysical properties and how they impact MET receptor currents.
We hypothesize that the lack of connectivity in bundle motion is to optimize the hair bundle's response to natural
stimulation and that synchronization of stereocilia comes from the tectorial membrane (OHCs) or the fluid
stimulation (IHCs). We further hypothesize that we will identify mechanical correlates for fast and slow adaptation
as well as gating compliance; however, we do expect there to be less slow adaptation as compared to other hair
cell types but also that the mechanism of slow adaptation will not align with classical theories. And finally. we
hypothesize that MET channel properties work with hair bundle mechanics to create tuning of the receptor
current. We will investigate each of these hypotheses in the following specific aims. SA1 will generate a
comprehensive data set of MET channel and hair bundle properties at multiple frequency positions from rats and
mice P10-12 of age. By taking advantage of three modes of stimulations, wide probe, fluid jet and the newly
developed narrow probe, we can separate between MET channel and hair bundle properties. SA2 will directly
address hair bundle mechanics and known hair bundle properties using the newly developed high-speed imaging
with either narrow probe or fluid jet technology. Experiments will target MET channel gating compliance, fast and
slow adaptation and voltage dependent mechanical hair bundle responses. SA3 will generate frequency
response curves under physiological conditions using the wide probe and fluid jet to define the filtering properties
of the channel and the hair bundle. Completion of these aims will provide an unprecedented level of quantitative
information as to how the hair bundle moves and how this motion shapes the MET receptor current generated.
They will be the standard by which molecular manipulations can be assessed.
摘要:听觉和前庭感觉细胞使用发束,这是一个充满肌动蛋白的阶梯阵列。
静纤毛,将机械运动转化为电信号。机械门控 (MET) 离子通道
位于较短静纤毛的尖端,通过拉动延伸的尖端连杆产生的力来激活
静纤毛之间。由于感觉毛束是亚瑟综合症等遗传性疾病的主要部位
并且还容易受到噪音和老化的损坏,了解这些束的工作原理至关重要
设计预防和恢复功能的疗法。哺乳动物的耳蜗毛束具有不寻常的特征
形态和立体纤毛间的连接不像其他内耳末端器官那么紧密。有
关于影响 MET 电流和发束的潜在过程的机制存在相当多的争论
机制,例如快速和慢速适应、门控顺应性和电压驱动响应。还有进一步
关于 MET 当前反应与机械、分子之间是否确实存在因果关系的争议
机制。在能够利用新鉴定的 MET 分子的基因操纵能力之前,我们
需要清楚地了解发束的生物物理特性以及它们如何影响 MET 受体电流。
我们假设发束运动中缺乏连通性是为了优化发束对自然的响应
刺激和静纤毛的同步来自盖膜 (OHC) 或液体
刺激(IHC)。我们进一步假设我们将识别快速和慢速适应的机械相关性
以及控制合规性;然而,我们确实预计与其他毛发相比,适应速度不会那么慢
细胞类型,而且缓慢适应的机制与经典理论不一致。最后。我们
假设 MET 通道特性与发束力学一起作用以调节受体
当前的。我们将在以下具体目标中研究每个假设。 SA1将生成一个
大鼠和小鼠在多个频率位置的 MET 通道和发束特性的综合数据集
P10-12 龄小鼠。通过利用三种刺激模式:宽探头、流体喷射和最新的
开发了窄探头,我们可以区分 MET 通道和发束特性。 SA2将直接
使用新开发的高速成像技术解决发束力学和已知的发束特性
采用窄探头或流体喷射技术。实验将针对 MET 通道门控合规性、快速且
缓慢的适应和电压依赖的机械发束响应。 SA3将产生频率
生理条件下的响应曲线,使用宽探头和流体射流来定义过滤特性
通道和发束。这些目标的完成将提供前所未有的定量水平
有关发束如何移动以及该运动如何塑造所产生的 MET 受体电流的信息。
它们将成为评估分子操作的标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony J Ricci其他文献
Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells
产后哺乳动物前庭毛细胞发育和再生的不协调成熟
- DOI:
10.1371/journal.pbio.3000326 - 发表时间:
2019 - 期刊:
- 影响因子:9.8
- 作者:
Tian Wang;Mamiko Niwa;Zahra N Sayyid;Davood K Hosseini;Nicole Pham;Sherri M Jones;Anthony J Ricci;Alan G Cheng - 通讯作者:
Alan G Cheng
Large-scale annotated dataset for cochlear hair cell detection and classification
用于耳蜗毛细胞检测和分类的大规模注释数据集
- DOI:
10.1038/s41597-024-03218-y - 发表时间:
2024-04-23 - 期刊:
- 影响因子:9.8
- 作者:
Christopher J. Buswinka;David B. Rosenberg;Rubina G. Simikyan;Richard T. Osgood;Katharine Fern;ez;ez;Hidetomi Nitta;Yushi Hayashi;Leslie W. Liberman;Emily Nguyen;Erdem Yildiz;Jinkyung Kim;Am;ine Jarysta;ine;Justine Renauld;Ella Wesson;Haobing Wang;Punam Thapa;Pierrick Bordiga;Noah McMurtry;Juan Llamas;Siân R. Kitcher;Ana I. López;Runjia Cui;Ghazaleh Behnammanesh;J. Bird;Angela Ballesteros;A. Vélez;A. Edge;Michael R. Deans;Ksenia Gnedeva;B. R. Shrestha;Uri Manor;Bo Zhao;Anthony J Ricci;Basile Tarchini;Martin Basch;Ruben S. Stepanyan;L. D. L;egger;egger;M. Rutherford;M. C. Liberman;Bradley J. Walters;C. Kros;Guy P. Richardson;Lisa L. Cunningham;Artur A. Indzhykulian - 通讯作者:
Artur A. Indzhykulian
Anthony J Ricci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony J Ricci', 18)}}的其他基金
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
- 批准号:
10632948 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Identifying new sensors for in vivo cochlear imaging
识别用于体内耳蜗成像的新传感器
- 批准号:
10433182 - 财政年份:2022
- 资助金额:
$ 66.42万 - 项目类别:
Identifying new sensors for in vivo cochlear imaging
识别用于体内耳蜗成像的新传感器
- 批准号:
10617806 - 财政年份:2022
- 资助金额:
$ 66.42万 - 项目类别:
Functional Integrity of the Aging Auditory Synapse
衰老听觉突触的功能完整性
- 批准号:
9151173 - 财政年份:2016
- 资助金额:
$ 66.42万 - 项目类别:
相似国自然基金
成骨细胞的听觉感应
- 批准号:31570943
- 批准年份:2015
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Wearable Array for Ultrasound Stimulation on the Retina
用于视网膜超声刺激的可穿戴阵列
- 批准号:
10766622 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别:
Improving Cochlear Implant Outcomes Through Modeling and Programming Strategies Based on Human Inner Ear Pathology
通过基于人类内耳病理学的建模和编程策略改善人工耳蜗的效果
- 批准号:
10825043 - 财政年份:2023
- 资助金额:
$ 66.42万 - 项目类别: