Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
基本信息
- 批准号:10621928
- 负责人:
- 金额:$ 75.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAbeta synthesisAddressAffectAlzheimer like pathologyAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease riskAstrocytesBiological ProcessBrainCell DeathCell physiologyCellsChromatinChromatin Conformation Capture and SequencingClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesComplexDNADNA MethylationDataDementiaDendritesDevelopmentDiseaseDissectionDistalEpigenetic ProcessEtiologyGene ExpressionGenesGeneticGenetic HeterogeneityGenetic Predisposition to DiseaseGenetic RiskGenetic TranscriptionGenetic studyGenomeGenomicsGoalsHeritabilityHeterogeneityHumanHuman GenomeHuman bodyInduced pluripotent stem cell derived neuronsInvestigationLeadLinkLinkage Disequilibrium MappingMachine LearningMapsMicrogliaModelingMorphologyNatureNeurodegenerative DisordersNeuronsOxidative StressPathogenesisPathway interactionsPlayPluripotent Stem CellsRegulationReportingResearchRoleSynapsesTestingTherapeuticUnited StatesUntranslated RNAVariantbiological systemsbrain tissuecausal variantcell typecellular pathologydesigndisorder riskepigenomicsgenetic architecturegenome wide association studyhistone modificationindexinginduced pluripotent stem cellinsightmachine learning methodmolecular pathologymulti-ethnicmultiple omicsneuroinflammationnovel therapeutic interventionrisk variantsynaptic functiontau aggregationtau-1traittranscriptome sequencingtranscriptomicsvirtual
项目摘要
PROJECT SUMMARY
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia with
high heritability (~70%). It is increasingly clear that AD is highly polygenic, and for most of AD cases it is the
polygenicity of the risk variants across the genome that predisposes the disease risk. In contrast to the rapid
identification of risk loci associated with AD by recent genome-wide association studies (GWAS), identifying the
potential causal variants/genes at the reported risk loci and decoding these variants/genes into molecular and
cellular pathology have lagged far behind. Since disease variants, mostly locating in noncoding regions of the
human genome, have been shown to affect cellular function through multi-level regulations such as DNA
accessibility and histone modifications, DNA methylation and RNA expression in a cell type-specific manner,
comprehensive and unbiased investigating the cell type-specific influence of generic risk variants on AD risk at
multiple levels, including epigenomic, transcriptomic, and cellular levels, in an isogenic background is crucial to
understand the genetic basis of AD pathogenesis. In the current application, by combining human induced
pluripotent stem cells (hiPSCs) with gene editing and comprehensive multi-omics and cellular analyses, we will
dissect the AD genetic risk variants into cell type-specific molecular and cellular pathology. Given the polygenic
nature of AD, and the heterogeneity of AD risk genes on the cellular level, we hypothesize that multiple genetic
risk variants act synergistically among different compartments (e.g. cell types) to contribute to pathogenesis of
AD. First, we will identify AD risk variants and genes with comprehensive analyses of AD genetic architecture
using machine learning approaches including DVAR, eVAR and iRIGS (Aim 1). Second, we will delineate the
cell type-specific epigenetic and transcriptomic signatures associated with AD candidate risk variants using
human iPSC-derived neurons/microglia/astrocytes (Aim 2). Last, we will determine the functional impact of AD
candidate risk variants on AD-like cellular pathology in neurons, microglia, astrocytes, and their co-cultures (Aim
3). Our proposal may advance our understanding of the complex genetic architecture of AD, leading to a better
understanding of AD pathogenesis and facilitating the development of novel therapeutic strategies.
项目概要
阿尔茨海默病(AD)是一种进行性神经退行性疾病,也是导致痴呆的主要原因
高遗传力(~70%)。越来越明显的是,AD 具有高度多基因性,对于大多数 AD 病例来说,这是
基因组中易患疾病风险的风险变异的多基因性。与快速相比
通过最近的全基因组关联研究 (GWAS) 识别与 AD 相关的风险位点,确定
报告的风险位点处的潜在因果变异/基因,并将这些变异/基因解码为分子和
细胞病理学已经远远落后。由于疾病变异,大多位于非编码区域
人类基因组已被证明可以通过 DNA 等多级调控影响细胞功能
可及性和组蛋白修饰、DNA 甲基化和 RNA 以细胞类型特异性方式表达,
全面、公正地调查一般风险变异对 AD 风险的细胞类型特异性影响
同基因背景下的多个水平,包括表观基因组、转录组和细胞水平,对于
了解 AD 发病机制的遗传基础。在目前的应用中,通过结合人体感应
通过基因编辑和全面的多组学和细胞分析的多能干细胞(hiPSC),我们将
将 AD 遗传风险变异剖析为细胞类型特异性分子和细胞病理学。鉴于多基因
AD 的性质以及 AD 风险基因在细胞水平上的异质性,我们假设多种遗传因素
风险变异在不同区室(例如细胞类型)之间协同作用,促进疾病的发病机制
广告。首先,我们将通过全面分析 AD 遗传结构来识别 AD 风险变异和基因
使用机器学习方法,包括 DVAR、eVAR 和 iRIGS(目标 1)。其次,我们将划定
使用与 AD 候选风险变异相关的细胞类型特异性表观遗传和转录组特征
人 iPSC 衍生的神经元/小胶质细胞/星形胶质细胞(目标 2)。最后,我们将确定 AD 的功能影响
神经元、小胶质细胞、星形胶质细胞及其共培养物中 AD 样细胞病理学的候选风险变异(目标
3)。我们的建议可能会增进我们对 AD 复杂遗传结构的理解,从而更好地了解 AD 的遗传结构。
了解 AD 发病机制并促进新治疗策略的开发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel brain-penetrant inhibitor of G9a methylase blocks Alzheimer's disease proteopathology for precision medication.
G9a 甲基化酶的新型脑渗透抑制剂可阻断阿尔茨海默病的蛋白质病理学,从而实现精准治疗。
- DOI:
- 发表时间:2023-11-21
- 期刊:
- 影响因子:0
- 作者:Chen, Xian;Xie, Ling;Sheehy, Ryan;Xiong, Yan;Muneer, Adil;Wrobel, John;Park, Kwang;Liu, Jing;Velez, Julia;Luo, Yanjia;Li, Ya;Quintanilla, Luis;Li, Yongyi;Xu, Chongchong;Wen, Zhexing;Song, Juan;Jin, Jian;Deshmukh, Mohanish
- 通讯作者:Deshmukh, Mohanish
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BINGSHAN LI其他文献
BINGSHAN LI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BINGSHAN LI', 18)}}的其他基金
Drug repositioning for Alzheimer's disease via genetics, electronic health records, and human iPSC models
通过遗传学、电子健康记录和人类 iPSC 模型对阿尔茨海默病进行药物重新定位
- 批准号:
10554325 - 财政年份:2021
- 资助金额:
$ 75.16万 - 项目类别:
Drug repositioning for Alzheimer's disease via genetics, electronic health records, and human iPSC models
通过遗传学、电子健康记录和人类 iPSC 模型对阿尔茨海默病进行药物重新定位
- 批准号:
10390283 - 财政年份:2021
- 资助金额:
$ 75.16万 - 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
- 批准号:
10402828 - 财政年份:2020
- 资助金额:
$ 75.16万 - 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
- 批准号:
10231253 - 财政年份:2020
- 资助金额:
$ 75.16万 - 项目类别:
Design and analysis of sequencing studies for gene mapping in families
家族基因定位测序研究的设计和分析
- 批准号:
8504179 - 财政年份:2013
- 资助金额:
$ 75.16万 - 项目类别:
Design and analysis of sequencing studies for gene mapping in families
家族基因定位测序研究的设计和分析
- 批准号:
8668121 - 财政年份:2013
- 资助金额:
$ 75.16万 - 项目类别:
相似海外基金
PREVENTING ALZHEIMER’S DISEASE-LIKE BRAIN PATHOLOGY IN HIV INFECTION BY TARGETING CCR5
通过靶向 CCR5 预防 HIV 感染中的阿尔茨海默病样脑部病变
- 批准号:
10700624 - 财政年份:2023
- 资助金额:
$ 75.16万 - 项目类别:
Communicating Lung Dysfunction to the Brain in Alzheimer's Disease
阿尔茨海默氏病将肺功能障碍传达给大脑
- 批准号:
10711004 - 财政年份:2023
- 资助金额:
$ 75.16万 - 项目类别:
Interactions between Mitochondria, ER, and Amyloid
线粒体、ER 和淀粉样蛋白之间的相互作用
- 批准号:
10751909 - 财政年份:2023
- 资助金额:
$ 75.16万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 75.16万 - 项目类别:
Modeling Alzheimer's Disease in Hispanic Latino populations using human cortical organoids
使用人类皮质类器官模拟西班牙裔拉丁裔人群的阿尔茨海默病
- 批准号:
10680168 - 财政年份:2023
- 资助金额:
$ 75.16万 - 项目类别: