Drug repositioning for Alzheimer's disease via genetics, electronic health records, and human iPSC models
通过遗传学、电子健康记录和人类 iPSC 模型对阿尔茨海默病进行药物重新定位
基本信息
- 批准号:10554325
- 负责人:
- 金额:$ 78.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAlzheimer&aposs disease riskAstrocytesBiological AssayBiological ProcessCell DeathCell LineClinicalClinical TrialsCodeCombined Modality TherapyDataDementiaDevelopmentDiagnosticDiseaseDrug TargetingDrug usageEarly Onset Alzheimer DiseaseElectronic Health RecordElectronicsEtiologyFDA approvedFailureGenderGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic studyGoalsHeritabilityHumanImpaired cognitionIndividualLate Onset Alzheimer DiseaseMicrogliaMitochondriaModelingMorphologyMultiomic DataMutationNatural Language ProcessingNeurodegenerative DisordersNeuronsOxidative StressPathogenesisPathologicPathway interactionsPatientsPharmaceutical PreparationsPhenotypePositioning AttributeProductionRaceRecording of previous eventsRoleStructureSynapsesTextUnited StatesValidationapolipoprotein E-4candidate identificationcandidate validationcell typecohortcomorbiditycomputer frameworkcytokinedrug developmentdrug discoverydrug repurposingdrug use screeningefficacy testinggene networkgenetic architecturegenome wide association studygenomic datahigh throughput screeninginduced pluripotent stem cellinnovationmouse modelnovelphenotyping algorithmpresenilin-1preventscreeningsexsingle cell sequencingstem cell modelsuccesstau-1transmission processvirtual
项目摘要
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the leading cause of
dementia in the United States. Unfortunately, there is no cure for AD. Drug discovery for AD has
suffered significant failures, many at late stage clinical trials, partly due to our poor
understanding of AD pathology and the lack of disease-relevant and human-relevant discovery and
development models. This calls for team efforts with diverse and complementary expertise to tackle
the challenges together, by developing innovative approaches from multiple angles to achieve the
goal of identifying AD drugs.
In this application, we propose three complementary Specific Aims that together aim to identify
FDA approved drugs with repurpose potential for AD, from distinct but complementary angles that act
synergistically to boost the likelihood of success. AD is a highly heritable disease, with an
estimated heritability of 70%, highlighting the critical role of genetics in understanding the
disease etiology. Recent genetic studies have identified over 30 loci, enabling us to dissect the
genetic architecture of AD, including the biological processes and cell types involved in disease
etiology. In particular, we aim to dissect the highly polygenic AD etiology into distinct
pathophysiological components to guide drug repurposing, which is only feasible in recent years
thanks to large scale GWAS and massive genomics data available publicly (Aim 1). In parallel, we
will mine millions of electronic health records (EHRs) to identify drugs that reduce AD risk and
cognitive decline, by developing phenotyping algorithms from EHR for AD related phenotypes (Aim 2).
In addition, we will develop a high throughput screening (HTS) gene expression profiling assay and
use human induced pluripotent stem cell (iPSC) models to identify candidate compounds, and will
further test the efficacy of the candidates in both patient-derived iPSC lines and AD mouse models
(Aim 3). The three aims are complementary and synergistic, in the sense that they independently
tackle the same problem from drastically distinct angles, while findings from one can be served as
validation for others. Altogether, leveraging distinct and complementary expertise, we expect to
yield bona fide repurposable drugs for AD with orthogonal support.
阿尔茨海默氏病 (AD) 是一种进行性神经退行性疾病,也是导致该病的主要原因
不幸的是,目前还没有治疗 AD 的药物。
遭受重大失败,其中许多是在后期临床试验中,部分原因是我们的能力不足
对 AD 病理学的了解以及缺乏与疾病相关和人类相关的发现和
这需要具有多样化且互补的专业知识的团队努力来解决。
通过从多个角度开发创新方法来共同应对挑战,以实现
识别 AD 药物的目标。
在此应用中,我们提出了三个互补的具体目标,共同旨在确定
FDA 从不同但互补的角度批准了具有治疗 AD 潜力的药物
AD 是一种高度遗传性疾病,具有协同作用,可提高成功的可能性。
估计遗传力为 70%,凸显了遗传学在理解
最近的遗传学研究已经确定了 30 多个位点,使我们能够剖析疾病的病因。
AD 的遗传结构,包括疾病涉及的生物过程和细胞类型
特别是,我们的目标是将高度多基因的 AD 病因剖析成不同的病因。
指导药物再利用的病理生理成分,这只有在最近几年才有可能
得益于大规模 GWAS 和公开的大量基因组数据(目标 1)。
将挖掘数百万份电子健康记录 (EHR),以识别可降低 AD 风险和
认知能力下降,通过 EHR 开发 AD 相关表型的表型算法(目标 2)。
此外,我们将开发高通量筛选(HTS)基因表达谱分析方法和
使用人类诱导多能干细胞(iPSC)模型来鉴定候选化合物,并将
进一步测试候选药物在源自患者的 iPSC 系和 AD 小鼠模型中的功效
(目标 3) 从独立的意义上来说,这三个目标是互补和协同的。
从截然不同的角度解决同一问题,而其中一个的发现可以作为
总而言之,我们希望利用独特且互补的专业知识为他人提供验证。
在正交支持下产生真正的可重复利用的 AD 药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BINGSHAN LI其他文献
BINGSHAN LI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BINGSHAN LI', 18)}}的其他基金
Drug repositioning for Alzheimer's disease via genetics, electronic health records, and human iPSC models
通过遗传学、电子健康记录和人类 iPSC 模型对阿尔茨海默病进行药物重新定位
- 批准号:
10390283 - 财政年份:2021
- 资助金额:
$ 78.99万 - 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
- 批准号:
10402828 - 财政年份:2020
- 资助金额:
$ 78.99万 - 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
- 批准号:
10621928 - 财政年份:2020
- 资助金额:
$ 78.99万 - 项目类别:
Towards a better understanding of genetic architecture of Alzheimer's disease with human iPSC models
利用人类 iPSC 模型更好地了解阿尔茨海默病的遗传结构
- 批准号:
10231253 - 财政年份:2020
- 资助金额:
$ 78.99万 - 项目类别:
Design and analysis of sequencing studies for gene mapping in families
家族基因定位测序研究的设计和分析
- 批准号:
8504179 - 财政年份:2013
- 资助金额:
$ 78.99万 - 项目类别:
Design and analysis of sequencing studies for gene mapping in families
家族基因定位测序研究的设计和分析
- 批准号:
8668121 - 财政年份:2013
- 资助金额:
$ 78.99万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 78.99万 - 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
$ 78.99万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 78.99万 - 项目类别:
Sex-differences in HIV persistence and Immune Dynamics during Reproductive Aging
生殖衰老过程中艾滋病毒持久性和免疫动态的性别差异
- 批准号:
10838316 - 财政年份:2023
- 资助金额:
$ 78.99万 - 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
- 批准号:
10656807 - 财政年份:2023
- 资助金额:
$ 78.99万 - 项目类别: