Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening

基于重组工程的无切割基因编辑工具包,用于大规模基因组工程和功能筛选

基本信息

  • 批准号:
    10622585
  • 负责人:
  • 金额:
    $ 41.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-10 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Project Abstract Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening Exemplified by the CRISPR-Cas9 system, gene-editing technology is a powerful collection of tools for probing the hidden mechanisms of human diseases by understanding and controlling the functions of human genome variants. Limitations of existing CRISPR tools stem from two sources: 1) Cas9 cutting causes uncontrollable DNA damage at on/off-target sites, leading to toxicity and stress response. Recent studies confirmed that cutting-induced damages lead to significant gene expression changes and enrichment of p53-mutant cells, thus confounding some CRISPR screens; 2) CRISPR enzymes do not repair the target DNA, thus relying on endogenous DNA repair to complete editing. This results in low efficiency and high variability for Cas9-mediated homology-directed repair (HDR) across cell types and models. To overcome these limitations, we have identified a recombineering-based gene-editing tool, termed RecE/T- induced Editing via Designer-Cas9-Initiated Targeting (REDIT). REDIT uses deactivated Cas9 (dCas9) and generates minimal DNA break and near-zero toxicity. REDIT uses phage recombineering proteins RecE/T for gene-editing, bypassing the dependence on endogenous repair mechanisms. Our proof-of-concept demonstration showed that REDIT achieved efficient kb-scale editing without DNA cutting. We will focus on technology development and validation with well-characterized models using gold-standard assays. The proposed RecE/T-like recombineering proteins present new opportunities as they promote strand invasion/exchange without cleavage when genome sites become transiently accessible via dCas9 DNA-unwinding. Our goal is to develop a safe, scalable toolkit with up to 80% HDR efficiency for kilobase gene- editing and pooled knock-in screening.
项目摘要 用于大规模基因组工程的基于重组工程的无切割基因编辑工具包 和功能筛选 以 CRISPR-Cas9 系统为例,基因编辑技术是一个强大的集合 通过理解和控制来探索人类疾病隐藏机制的工具 人类基因组变异的功能。现有 CRISPR 工具的局限性源于两个方面 来源:1) Cas9 切割会导致靶点/脱靶位点发生无法控制的 DNA 损伤,从而导致 毒性和应激反应。最近的研究证实,切割引起的损伤会导致 显着的基因表达变化和 p53 突变细胞的富集,从而混淆 一些 CRISPR 筛选; 2) CRISPR酶不修复靶DNA,因此依赖于 内源性DNA修复完成编辑。这导致低效率和高可变性 Cas9 介导的跨细胞类型和模型的同源定向修复 (HDR)。克服 针对这些限制,我们发现了一种基于重组工程的基因编辑工具,称为 RecE/T- 通过 Designer-Cas9-Initiated Targeting (REDIT) 诱导编辑。 REDIT 使用停用的 Cas9 (dCas9) 并产生最小的 DNA 断裂和接近零的毒性。 REDIT 使用噬菌体 用于基因编辑的重组工程蛋白 RecE/T,绕过对内源性的依赖 修复机制。我们的概念验证演示表明 REDIT 实现了高效 kb 级编辑,无需 DNA 切割。我们将专注于技术开发和验证 具有使用金标准检测的良好表征的模型。拟议的 RecE/T 类 重组工程蛋白因促进链入侵/交换而提供了新的机会 当基因组位点通过 dCas9 DNA 解旋暂时可访问时,不会发生切割。 我们的目标是开发一个安全、可扩展的工具包,对千碱基基因具有高达 80% 的 HDR 效率 编辑和汇总敲入筛选。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Le Cong其他文献

Le Cong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Le Cong', 18)}}的其他基金

Recombineering-based no-cleavage gene-editing toolkit for large-scale genome engineering and functional screening
基于重组工程的无切割基因编辑工具包,用于大规模基因组工程和功能筛选
  • 批准号:
    10184864
  • 财政年份:
    2021
  • 资助金额:
    $ 41.79万
  • 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
  • 批准号:
    10450062
  • 财政年份:
    2020
  • 资助金额:
    $ 41.79万
  • 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
  • 批准号:
    10251146
  • 财政年份:
    2020
  • 资助金额:
    $ 41.79万
  • 项目类别:
Towards Robust Multiplex Genome Engineering Beyond CRISPR-Cas9
迈向 CRISPR-Cas9 之外的稳健多重基因组工程
  • 批准号:
    10287896
  • 财政年份:
    2020
  • 资助金额:
    $ 41.79万
  • 项目类别:

相似国自然基金

生长素-TMK信号途径通过GSK3调控细胞不对称分裂的分子机制
  • 批准号:
    32300271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PUB8泛素E3连接酶拮抗生长素调控脱落酸信号及子叶变绿的遗传机理
  • 批准号:
    32360082
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
香豆素依赖生长素信号和极性运输抑制根生长的分子机制
  • 批准号:
    32360076
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
毛华菊CvARF5和CvARF3响应生长素调控舌状花形态的分子机制
  • 批准号:
    32371948
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生长素运输载体OsPIN4-2在水稻粒型调控中的网络解析
  • 批准号:
    32301911
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a clinically-relevant genetically engineered mouse model for Nut carcinoma
开发临床相关的坚果癌基因工程小鼠模型
  • 批准号:
    10554577
  • 财政年份:
    2023
  • 资助金额:
    $ 41.79万
  • 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 41.79万
  • 项目类别:
Probing the Role of Integrator in Neuronal Function
探讨积分器在神经元功能中的作用
  • 批准号:
    10777205
  • 财政年份:
    2023
  • 资助金额:
    $ 41.79万
  • 项目类别:
Kinetochore Assembly and Regulation
着丝粒组装和调控
  • 批准号:
    10717202
  • 财政年份:
    2023
  • 资助金额:
    $ 41.79万
  • 项目类别:
Gut stress-induced intercellular signaling networks promoting longevity and proteostasis
肠道应激诱导的细胞间信号网络促进长寿和蛋白质稳态
  • 批准号:
    10717808
  • 财政年份:
    2023
  • 资助金额:
    $ 41.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了