Cellular and molecular mechanisms regulating synovial joint development

调节滑膜关节发育的细胞和分子机制

基本信息

  • 批准号:
    10899096
  • 负责人:
  • 金额:
    $ 7.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary and Abstract Synovial joints are essential for body motion and quality of life. Their synovial cavity and lubricant-rich fluid permit unhindered joint motion and function and provide tissue protection and nourishment. While these aspects of synovial joint biology are well understood, little is known about how the cavity and its fluid actually develop during embryogenesis. At early fetal stages, the limb skeletal primordia are composed of continuous cartilaginous structures without joints. Joint development starts with appearance of an “interzone”, a tissue made of mesenchymal cells expressing the growth and differentiation factor 5 gene (Gdf5). We previously showed that Gdf5+ cell progenies produce most joint tissues over time and the synovial cavity forms in the middle of the interzone. Because the interzone cells are initially attached to each other, the cavitation process must involve their physical separation along the prospective articular line to facilitate the creation of a fluid-filled cavity. Previous studies indicated that interzone cells produce hyaluronan (HA) around the cavitation time, and this is accompanied by accumulation of a HA-rich matrix in local tissues. HA is a major component of extracellular matrix and synovial fluid and plays important roles in tissue homeostasis. In my preliminary studies, I found that just before cavitation onset, interzone cells in mouse embryo limbs express hyaluronan synthase 2 (HAS2, ‘the HA synthesizer’) and transmembrane protein 2 (TMEM2), a cell surface hyaluronidase that specifically cleaves high molecular weight HA into intermediate and biologically-active fragments. I also discovered that, morphologically, cavitation initiates with formation of microlumens along the prospective articular line and is completed soon afterwards when the pockets coalesce to generate a single one synovial cavity. This process is extremely rapid in the developing knee but is slower in digits. These and other novel data lead to my central hypothesis that joint cavitation is brought about by convergence of diverse but coordinated biological processes. Accordingly, Aim 1 is to determine the role of HAS2 and TMEM2 in joint cavitation using genetically modified mouse models. I will conditionally delete Has2 and/or Tmem2 in interzone cells (using Gdf5Cre mice) and subject resulting mutant embryos to detailed analysis. Aim 2 is to determine cellular and molecular mechanisms of cavitation. I will investigate downstream signaling pathways in response to changes in HA sizes and resulting interactions with cell surface CD44 receptor, regulating HA metabolism in synovial joint development and long-term maintenance. The project will provide novel insights into mechanisms underlying joint development and cavitation. In line with the K01 mechanism, the project will allow me to acquire new expertise in skeletal developmental and molecular biology and to integrate it with my previous training in bioengineering. This unique combination of expertise in two distinct but interrelated fields will allow me to establish an independent career distinct from my mentors and create novel therapeutic tools to repair and regenerate cartilage for the treatment of joint conditions such as osteoarthritis (OA).
项目概要和摘要 滑膜关节对于身体运动和生活质量至关重要,其滑液腔和富含润滑剂的液体。 允许不受阻碍的关节运动和功能,并提供组织保护和营养。 滑膜关节生物学的各个方面都已广为人知,但对于腔及其液体实际上是如何运作的却知之甚少 在胚胎发生过程中,肢体骨骼原基由连续的组成。 没有关节的软骨结构从“间带”(一种组织)的出现开始。 由表达生长和分化因子 5 基因 (Gdf5) 的间充质细胞组成。 表明 Gdf5+ 细胞后代随着时间的推移产生大多数关节组织,并且滑液腔在 由于层间细胞最初是相互附着的,因此发生空化过程。 必须涉及它们沿着预期关节线的物理分离,以促进创建充满液体的 先前的研究表明,区间细胞在空化时间附近产生透明质酸(HA),并且 这伴随着局部组织中富含HA的基质的积累,HA是HA的主要成分。 在我的初步研究中,细胞外基质和滑液在组织稳态中发挥着重要作用。 研究中,我发现在空化发生之前,小鼠胚胎四肢中的区间细胞表达透明质酸 合酶 2(HAS2,“HA 合成器”)和跨膜蛋白 2 (TMEM2),一种细胞表面透明质酸酶 还可以将高分子量 HA 特异性切割成中间体和生物活性片段。 发现,从形态上看,空化是随着沿着预期方向形成微腔而开始的。 关节线,当袋合并形成单个滑液时很快就完成了 这个过程在发育中的膝盖中非常快,但在手指上则较慢。 数据引出了我的中心假设,即联合空化是由不同但不同的因素的汇聚引起的 因此,目标 1 是确定 HAS2 和 TMEM2 在联合中的作用。 使用转基因小鼠模型进行空化,我将有条件地删除区间的 Has2 和/或 Tmem2。 目标 2 是确定细胞(使用 Gdf5Cre 小鼠)和产生的突变胚胎的详细分析。 我将研究空化的细胞和分子机制。 HA 大小的变化以及由此产生的与细胞表面 CD44 受体的相互作用,调节 HA 代谢 该项目将为滑膜关节发育和长期维护机制提供新的见解。 根据 K01 机制,该项目将使我能够 获得骨骼发育和分子生物学方面的新专业知识,并将其与我以前的知识相结合 生物工程方面的培训将两个不同但相互关联的领域的专业知识独特地结合在一起。 我要建立一个与我的导师不同的独立职业,并创造新颖的治疗工具来修复 并再生软骨以治疗骨关节炎(OA)等关节疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minwook Kim其他文献

Minwook Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minwook Kim', 18)}}的其他基金

Cellular and molecular mechanisms regulating synovial joint development
调节滑膜关节发育的细胞和分子机制
  • 批准号:
    10454425
  • 财政年份:
    2021
  • 资助金额:
    $ 7.32万
  • 项目类别:
Cellular and molecular mechanisms regulating synovial joint development
调节滑膜关节发育的细胞和分子机制
  • 批准号:
    10301040
  • 财政年份:
    2021
  • 资助金额:
    $ 7.32万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identification of a dopamine circuit mediating day eating and diet-induced obesity in mice
介导小鼠日间饮食和饮食诱导肥胖的多巴胺回路的鉴定
  • 批准号:
    10730567
  • 财政年份:
    2023
  • 资助金额:
    $ 7.32万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 7.32万
  • 项目类别:
High resolution lineage tracing of developmental hematopoiesis
发育造血的高分辨率谱系追踪
  • 批准号:
    10585400
  • 财政年份:
    2023
  • 资助金额:
    $ 7.32万
  • 项目类别:
Volumetric Real-Time MRI at 0.55 Tesla
0.55 特斯拉的体积实时 MRI
  • 批准号:
    10611241
  • 财政年份:
    2023
  • 资助金额:
    $ 7.32万
  • 项目类别:
Functions of the rete ovarii in ovary development, adult homeostasis, and female reproductive longevity
卵巢网在卵巢发育、成人体内平衡和女性生殖寿命中的功能
  • 批准号:
    10828038
  • 财政年份:
    2023
  • 资助金额:
    $ 7.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了