A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
基本信息
- 批准号:10749588
- 负责人:
- 金额:$ 7.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAmyloidAnatomyArtificial IntelligenceAwarenessBoard CertificationCardiacCardiovascular systemCase/Control StudiesClinicalClinical InformaticsCommunitiesComputer ModelsComputer Vision SystemsComputing MethodologiesConsumptionDataData SetDetectionDevelopmentDevicesDiagnosisDiagnostic testsDiseaseEarly DiagnosisEchocardiographyElectrocardiogramElectronic Health RecordEligibility DeterminationEmergency department visitEnsureEventFellowshipGeneral PopulationGenerationsGoalsHealthHealth systemHypertrophic CardiomyopathyImageIndividualLabelLeadLearningLeft Ventricular HypertrophyLibrariesMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMapsMedical InformaticsMentorsMentorshipMethodsModalityModelingMorbidity - disease rateMorphologic artifactsNoiseOutcomePathway interactionsPatientsPerformancePhenotypePopulationPopulation HeterogeneityPostdoctoral FellowPrevalenceProcessProviderRandomized, Controlled TrialsResearchResource-limited settingRetrospective cohortRiskScreening procedureSignal TransductionSpecialized CenterStructureTechnologyTestingTimeTrainingTwo-Dimensional EchocardiographyUltrasonographyadvanced analyticsautoencoderbiobankcardiac magnetic resonance imagingcareerclinical heterogeneitycomputer sciencecomputing resourcescostdeep learning modeldenoisingdesigndiagnostic algorithmempowermentexperiencefeasibility testinggenetic testingheart dimension/sizehypertensive heart diseaseimplementation scienceimprovedimproved outcomeinherited cardiomyopathymachine learning algorithmmedical schoolsmortalitymultimodalitynovelnovel therapeuticspoint of careportabilitypreventprimary care clinicprospectiverecruitscreeningscreening programsimulationskillsspectrographsudden cardiac deathsupervised learningtooltwo-dimensionalultrasoundunderserved communityuser-friendlyvision sciencewearable device
项目摘要
PROJECT SUMMARY
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, affecting up to 0.5% of the
general population. HCM confers an increased risk of morbidity and mortality but remains clinically
underrecognized. Traditionally, the diagnosis of HCM has relied on comprehensive assessment by
echocardiography or magnetic resonance imaging, modalities which are not available for screening of the
general population. As novel disease-modifying therapies emerge, there is a need for efficient strategies to
improve HCM screening outside specialized centers. The research proposed in this post-doctoral fellowship will
leverage advanced computational methods and the expanding availability of wearable and portable technologies
to adapt machine learning algorithms for the efficient, point-of-care screening of HCM. In Aim 1, the applicant
proposes to use a large electrocardiographic (ECG) library to adapt ECG signals for use with wearable devices
and fine-tune those signals for the detection of HCM. Noising-denoising algorithms and cross-modal pre-training
with corresponding echocardiographic and cardiac magnetic resonance videos will ensure that the models are
robust to noise and learn key representations of the HCM phenotype, respectively. In Aim 2, single-view, two-
dimensional echocardiographic videos will be extracted, pre-processed, and augmented to simulate point-of-
care image acquisition. Through a self-supervised, contrastive pre-training approach, the applicant will build
data-efficient computational models to screen for HCM based on echocardiographic videos reflecting the quality
and unique challenges seen with point-of-care use. In Aim 3, the applicant proposes a prospective case-control
study of patients with and without HCM, who will undergo point-of-care electrocardiography and
echocardiography, to test the feasibility and real-world performance of a two-stage HCM screening protocol
based on Aims 1 and 2. The proposal is supported by strong mentorship from experts in biomedical machine
learning, computer vision, and implementation science. The Yale School of Medicine offers the facilities and
computational resources necessary to accomplish the research goals, whereas the Yale-New Haven Health
electronic health record and well-phenotyped echocardiographic and ECG libraries ensure access to a diverse
and representative population. The proposed period of mentored research will support the applicant’s training in
computer vision, advanced analytics, and medical informatics. The experience, data, and skillset acquired during
this period will further support the applicant in preparing for a successful career in the implementation science of
cardiovascular artificial intelligence technologies.
项目概要
肥厚型心肌病 (HCM) 是最常见的遗传性心肌病,影响高达 0.5% 的患者
HCM 会增加普通人群的发病率和死亡率,但在临床上仍然存在。
传统上,HCM 的诊断依赖于综合评估。
超声心动图或磁共振成像,这些方法无法用于筛查
随着新的疾病缓解疗法的出现,需要有效的策略来治疗。
该博士后奖学金提出的研究将改善专业中心外的 HCM 筛查。
利用先进的计算方法和可穿戴和便携式技术的不断扩展的可用性
在目标 1 中,申请人采用机器学习算法来进行高效的 HCM 护理点筛查。
建议使用大型心电图 (ECG) 库来调整心电图信号以用于可穿戴设备
并对这些信号进行微调以检测 HCM 的噪声-去噪算法和跨模式预训练。
具有相应的超声心动图和心脏磁共振视频将确保模型
分别在目标 2、单视图、双视图中对噪声具有鲁棒性并学习 HCM 表型的关键表示。
三维超声心动图视频将被提取、预处理和增强以模拟点
通过自我监督的对比预训练方法,申请人将建立护理图像采集。
基于反映质量的超声心动图视频的数据高效计算模型来筛查 HCM
在目标 3 中,申请人提出了前瞻性病例对照。
对患有和不患有 HCM 的患者进行的研究,这些患者将接受护理点心电图检查和
超声心动图,测试两阶段 HCM 筛查方案的可行性和实际性能
基于目标 1 和 2。该提案得到生物医学机器专家的大力支持
耶鲁大学医学院提供学习、计算机视觉和科学实施的设施和服务。
完成研究目标所需的计算资源,而耶鲁-纽黑文健康中心
电子健康记录和表型良好的超声心动图和心电图库确保获得多样化的信息
拟议的指导研究期将支持申请人的培训。
计算机视觉、高级分析和医学信息学。
这段时期将进一步支持申请人为在实施科学领域取得成功的职业生涯做好准备
心血管人工智能技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evangelos Oikonomou其他文献
Evangelos Oikonomou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别: