Single-cell Transcriptomic Analysis of Cell Type Plasticity in Barrel Cortex of Normal and Autism Model Mice
正常和自闭症模型小鼠桶状皮层细胞类型可塑性的单细胞转录组分析
基本信息
- 批准号:10750812
- 负责人:
- 金额:$ 4.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ASD patientAnatomyBrainCell NucleusCellsClassificationComputational BiologyDevelopmentDimensionsDiseaseDisease modelElectrophysiology (science)EmbryoEndowmentFMR1Fluorescent in Situ HybridizationFragile X SyndromeFunctional disorderGene ExpressionGenesGlutamatesGraphHealthHeterogeneityHistologyHumanImpairmentIntellectual functioning disabilityKnock-outKnockout MiceKnowledgeLifeMachine LearningMapsMeasurementModelingMolecularMorphologyMusNeocortexNeurodevelopmental DisorderNeuronsPathologyPatternPhysical FunctionPhysiologicalReactionResolutionResourcesRoleSensorimotor functionsSensorySensory DeprivationSeriesSocial DevelopmentSocial FunctioningSomatosensory CortexSpecific qualifier valueStereotypingStructureSynapsesTactileTestingTherapeutic InterventionTimeTissuesTransgenic MiceValidationVibrissaeVisionVisualWild Type MouseWorkarea striataautism spectrum disorderbarrel cortexcell typecognitive functioncritical perioddeprivationdifferential expressionexperienceexperimental studyimprovedmRNA sequencingmachine learning pipelinemouse modelneocorticalneural circuitpostnatalpostnatal developmentprogramsresponsesensory cortexsingle nucleus RNA-sequencingsomatosensorysupervised learningsynaptogenesistargeted treatmenttemporal measurementtranscriptomicsunsupervised learning
项目摘要
PROJECT SUMMARY
During postnatal developmental stages known as critical periods (CPs), sensory experience acts upon a
genetically-hardwired connectivity map to sculpt the neocortical circuitry that enables mammalian functioning.
Neurodevelopmental disorders such as autism disrupt this experience-dependent plasticity and compromise
the development of social, cognitive, and physical function. Since autism spectrum disorder (ASD) patients
suffer from tactile hyper- or hypo-sensitivity that may reflect abnormal development of sensory circuits, ASD is
commonly studied in primary somatosensory cortex (S1). In addition, the mouse whisker S1 is a somatotopic
map of the mouse whisker pad, so manipulation of specific whiskers induces observable functional changes in
the corresponding barrels of S1. Morphological and physiological studies of experience-dependent plasticity in
S1 have revealed several CPs and elucidated the influence of ASD on their emergence in mouse models of
autism. However, the gene expression programs underlying experience-dependent plasticity and the
influence of ASD on it remain unknown at the resolution of S1’s 100+ transcriptomically distinct cell
types. Since these cell types form the circuits that carry out sensory function, it is important to study the
influence of experience and ASD on their maturation. This project combines single-nucleus mRNA sequencing
(snRNA-seq) and computational biology approaches rooted in machine learning with temporally resolved
whisker manipulations and a mouse model of ASD to test two hypotheses. To test the hypothesis that whisker
experience is required for cell type development in S1, snRNA-seq will be performed at several time points
spanning two established CPs in whisker-deprived and control mice. Unsupervised and supervised machine
learning approaches such as dimensionality reduction, clustering, graph embedding, and classification will be
used to identify transcriptomic cell types at each time point and assess the influence of whisker experience on
their maturation. Hybridization chain reaction fluorescence in situ hybridization (HCR-FISH) will enable the
validation of cell type-specific development patterns. To test the hypothesis that ASD disrupts
experience-dependent cell type maturation, snRNA-seq will be performed on Fmr1 KO mice under whisker
deprivation and control conditions. Fmr1 KO models Fragile X syndrome, the most frequent monogenic cause
of intellectual disability and ASD in humans. While Fmr1 deletion has been shown to delay the maturation of
circuits in S1 during a CP, its influence on experience-dependent maturation of S1 cell types remains unknown.
Comparing gene expression profiles and cell types between KO and wild-type mice with and without
whisker-deprivation will reveal transcriptomic signatures of ASD and pinpoint the cell types in which its effects
are localized. Knowledge generated from this study about the manifestation of ASD in transcriptomic cell types
will improve understanding of ASD pathology and reveal candidate cell types for targeted treatment.
项目概要
在称为关键期 (CP) 的出生后发育阶段,感官体验作用于
基因硬连线连接图来塑造新皮质电路,使哺乳动物发挥功能。
自闭症等神经发育障碍会破坏这种依赖于经验的可塑性和妥协
自闭症谱系障碍 (ASD) 患者的社交、认知和身体功能的发展。
患有触觉过敏或过敏症,这可能反映了感觉回路的异常发育,自闭症谱系障碍(ASD)是
通常在初级体感皮层(S1)中进行研究 此外,小鼠胡须 S1 是一种体感皮层。
鼠标胡须垫的地图,因此对特定胡须的操纵会引起可观察到的功能变化
S1的相应桶的经验依赖性可塑性的形态学和生理学研究。
S1 揭示了几种 CP 并阐明了 ASD 对它们在小鼠模型中出现的影响
然而,自闭症的基因表达程序是依赖于经验的可塑性和
在 S1 的 100 多个转录组不同细胞的分辨率下,ASD 对其的影响仍然未知
由于这些细胞类型形成执行感觉功能的电路,因此研究它们非常重要。
该项目结合了单核 mRNA 测序。
(snRNA-seq) 和植根于具有时间解析的机器学习的计算生物学方法
胡须操作和 ASD 小鼠模型来检验两个假设 来检验胡须的假设。
S1 中的细胞类型开发需要经验,snRNA-seq 将在几个时间点进行
跨越胡须剥夺小鼠和对照小鼠的两个既定 CP。
降维、聚类、图嵌入和分类等学习方法将
用于识别每个时间点的转录组细胞类型并评估胡须经验对转录组的影响
它们的成熟将使杂交链式反应荧光原位杂交(HCR-FISH)成为可能。
验证细胞类型特异性发育模式。检验自闭症谱系障碍 (ASD) 破坏的假设。
经验依赖性细胞类型成熟,将在胡须下的 Fmr1 KO 小鼠上进行 snRNA-seq
Fmr1 KO 模型的剥夺和控制条件是脆性 X 综合征,这是最常见的单基因原因。
Fmr1 缺失已被证明会延迟人类智力障碍和 ASD 的成熟。
CP 期间 S1 中的回路,其对 S1 细胞类型的经验依赖性成熟的影响仍然未知。
比较 KO 和野生型小鼠之间的基因表达谱和细胞类型
胡须剥夺将揭示 ASD 的转录组特征,并查明其影响的细胞类型
本研究产生的有关转录组细胞类型中 ASD 表现的知识。
将增进对 ASD 病理学的了解,并揭示用于靶向治疗的候选细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salwan Butrus其他文献
Salwan Butrus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the synaptic interactome of the high risk autism gene ANK2
阐明高风险自闭症基因 ANK2 的突触相互作用组
- 批准号:
10391766 - 财政年份:2022
- 资助金额:
$ 4.38万 - 项目类别:
Rescue of Cul3 haploinsufficiency phenotypes with CRISPR-mediated Cul3 activation
通过 CRISPR 介导的 Cul3 激活拯救 Cul3 单倍体不足表型
- 批准号:
10527778 - 财政年份:2022
- 资助金额:
$ 4.38万 - 项目类别:
A Circuit Mechanism for the Development of Cortico-cortical Connectivity
皮质-皮质连接发展的电路机制
- 批准号:
10469418 - 财政年份:2020
- 资助金额:
$ 4.38万 - 项目类别:
A Circuit Mechanism for the Development of Cortico-cortical Connectivity
皮质-皮质连接发展的电路机制
- 批准号:
10267037 - 财政年份:2020
- 资助金额:
$ 4.38万 - 项目类别: