The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
基本信息
- 批准号:10745027
- 负责人:
- 金额:$ 64.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAngiotensin IIAstrocytesBlood PressureBlood VesselsBrainCalciumCardiovascular systemCationsCell physiologyCerebrovascular CirculationCerebrumChronicConsciousCoupledDataDementiaDevelopmentDiameterDiastolic blood pressureEndothelial CellsErythrocytesEventFunctional disorderGeneticGliosisHeart RateHomeostasisHypertensionImageImmunohistochemistryImpaired cognitionImpairmentImplantInflammationInflammatoryInfusion PumpsInfusion proceduresLasersLinkMeasurementMeasuresMediatingMicroscopicModelingMolecularMolecular TargetMonitorMusNeurodegenerative DisordersNeuronal DysfunctionNeuronsNutrientOrganOxygenPathway interactionsPerfusionPermeabilityPhenotypeProcessReflex actionRisk FactorsSalineSensorySliceSystemic blood pressureTechnologyTelemetryTestingViralarterioleblood pressure elevationblood pressure variabilitycellular targetingcerebral hypoperfusioncognitive functionconstrictionearly onsethypoperfusionin vivoinnovationloss of functionmouse modelneurovascularneurovascular couplingneurovascular unitnovelparenchymal arteriolespharmacologicpressureresponsesubcutaneoustooltranscriptome sequencingtwo photon microscopytwo-photonvascular cognitive impairment and dementia
项目摘要
Intravascular pressure drives perfusion, which is critical for optimal neuronal function. High blood pressure
(hypertension), however, is a risk factor for cognitive decline. Emerging evidence identifies increased blood
pressure variability (IBPV), before the development of hypertension, as a strong predictor for vascular cognitive
impairment and dementia. The mechanism whereby IBPV mediates cognitive decline is unknown and is the
subject of this novel proposal. The myogenic response of cerebral arterioles protects the brain from blood
pressure fluctuations that could cause hyper- or hypoperfusion. Mechanosensory mechanisms are essential in
this process, but the impact of chronic blood pressure elevations at the level of the neurovascular unit has not
been previously described. For example, mechanosensitive Ca2+-permeable cation channels are expressed on
endothelial cells and astrocytes. Our exciting preliminary data demonstrate that increased intravascular pressure
significantly increased astrocyte Ca2+ in a a process that is enhanced in hypertension. Astrocyte Ca2+
dysregulation is often observed in neurodegenerative diseases suggesting it may underlie cellular processes
that contribute to the loss of homeostatic function and transition into reactive astrocytes. Because aberrant blood
pressure fluctuations are an early predictor of hypertension, we will explore the cellular mechanisms by which
intermittent increases in arterial pressure contribute to cognitive decline. Specifically, we will test the central
hypothesis that chronic IBPV amplifies mechano-driven Ca2+ increases at the NVU, which impairs astrocyte
homeostasis, decreases perfusion, and causes cognitive decline. Studies will be conducted in a novel murine
model of chronic increased blood pressure variability induced by pulsatile angiotensin II infusion coupled with
continuous blood pressure measurement in conscious mice. Aims 1-3 will test the following hypotheses: 1) that
IBPV impairs vascular function and causes cerebral hypoperfusion; 2) that increased IBPV enhances myogenic-
induced increases in astrocyte Ca2+and shifts astrocytes toward a pro-inflammatory/reactive phenotype; and 3)
that IBPV compromises sensory-evoked increases in cerebral blood flow, contributing to neuronal dysfunction.
Using in vivo and ex vivo approaches, we will link macroscopic cardiovascular variables to microscopic cellular
events at the neurovascular unit and assess how IBPV progressively impairs vascular, glial and neuronal
function. A longitudinal approach will determine the relationship between blood pressure fluctuations and
aberrant Ca2+ dynamics in astrocytes, endothelial cells and neurons. Pharmacological, molecular, and genetic
tools will be used to identify the cellular pathways underlying the loss of function at the neurovascular unit.
Findings from this innovative application will establish IBPV as a key driver and predictor of cognitive decline,
introduce a novel murine model to investigate the impact of IBPV on brain (and multi-organ) function, and identify
cellular and molecular targets of pressure-induced vascular and astrocyte dysfunction leading to compromised
cerebral perfusion and ultimately, neuronal dysfunction.
血管内压力驱动灌注,这对于最佳神经元功能至关重要。高血压
然而,(高血压)是认知能力下降的危险因素。新的证据表明血液增加
在高血压发生之前,压力变异性(IBPV)是血管认知的有力预测因子
损伤和痴呆。 IBPV 介导认知能力下降的机制尚不清楚,
这个新颖提案的主题。脑小动脉的生肌反应保护大脑免受血液侵害
压力波动可能导致灌注过度或灌注不足。机械感觉机制至关重要
这个过程,但神经血管单元水平的慢性血压升高的影响并没有
之前已经描述过。例如,机械敏感的 Ca2+ 可渗透的阳离子通道表达在
内皮细胞和星形胶质细胞。我们令人兴奋的初步数据表明,血管内压力增加
星形胶质细胞 Ca2+ 显着增加,这一过程在高血压中会增强。星形胶质细胞Ca2+
在神经退行性疾病中经常观察到失调,这表明它可能是细胞过程的基础
导致稳态功能丧失并转变为反应性星形胶质细胞。因为血液异常
压力波动是高血压的早期预测因素,我们将探讨其细胞机制
动脉压间歇性升高会导致认知能力下降。具体来说,我们将测试中央
假设慢性 IBPV 会放大 NVU 处机械驱动的 Ca2+ 增加,从而损害星形胶质细胞
体内平衡,减少灌注,并导致认知能力下降。研究将在一种新型小鼠中进行
脉动血管紧张素 II 输注联合诱导的慢性血压变异性增加模型
连续测量清醒小鼠的血压。目标 1-3 将检验以下假设:1)
IBPV 损害血管功能并导致脑灌注不足; 2) 增加 IBPV 增强肌源性
诱导星形胶质细胞 Ca2+ 增加,并使星形胶质细胞转向促炎/反应表型;和 3)
IBPV 会损害感觉诱发的脑血流量增加,导致神经元功能障碍。
使用体内和离体方法,我们将宏观心血管变量与微观细胞联系起来
神经血管单元的事件并评估 IBPV 如何逐渐损害血管、神经胶质和神经元
功能。纵向方法将确定血压波动与血压之间的关系
星形胶质细胞、内皮细胞和神经元中异常的 Ca2+ 动力学。药理学、分子和遗传学
工具将用于识别神经血管单元功能丧失的细胞途径。
这项创新应用的研究结果将确立 IBPV 作为认知能力下降的关键驱动因素和预测因素,
引入一种新型小鼠模型来研究 IBPV 对大脑(和多器官)功能的影响,并确定
压力引起的血管和星形胶质细胞功能障碍的细胞和分子靶标,导致受损
脑灌注并最终导致神经元功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA A FILOSA其他文献
JESSICA A FILOSA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA A FILOSA', 18)}}的其他基金
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10419670 - 财政年份:2021
- 资助金额:
$ 64.3万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10391639 - 财政年份:2021
- 资助金额:
$ 64.3万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10531928 - 财政年份:2021
- 资助金额:
$ 64.3万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9884817 - 财政年份:2017
- 资助金额:
$ 64.3万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9442869 - 财政年份:2017
- 资助金额:
$ 64.3万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9311373 - 财政年份:2017
- 资助金额:
$ 64.3万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
10117289 - 财政年份:2017
- 资助金额:
$ 64.3万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7841408 - 财政年份:2009
- 资助金额:
$ 64.3万 - 项目类别:
Astrocytes regulation of vascular tone: role in hypertension
星形胶质细胞调节血管张力:在高血压中的作用
- 批准号:
9302508 - 财政年份:2007
- 资助金额:
$ 64.3万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
8059688 - 财政年份:2007
- 资助金额:
$ 64.3万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
- 批准号:
10721391 - 财政年份:2023
- 资助金额:
$ 64.3万 - 项目类别:
Lipid regulation of Cardiac Excitation-Contraction coupling
心脏兴奋-收缩耦合的脂质调节
- 批准号:
10451117 - 财政年份:2022
- 资助金额:
$ 64.3万 - 项目类别:
Ace2 in the healthy and inflamed taste system
Ace2 在健康和炎症味觉系统中的作用
- 批准号:
10463442 - 财政年份:2022
- 资助金额:
$ 64.3万 - 项目类别:
Lipid regulation of Cardiac Excitation-Contraction coupling
心脏兴奋-收缩耦合的脂质调节
- 批准号:
10626790 - 财政年份:2022
- 资助金额:
$ 64.3万 - 项目类别: