Lipid regulation of Cardiac Excitation-Contraction coupling
心脏兴奋-收缩耦合的脂质调节
基本信息
- 批准号:10451117
- 负责人:
- 金额:$ 60.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAcuteAddressAdultAngiotensin IIArachidonic AcidsArchitectureAreaBiochemistryBiological AssayBiomechanicsBiotinylationBypassCalciumCardiacCardiac OutputCell DeathCell membraneCell surfaceCellsChronicConsensusCoupledCouplingCyclic AMP-Dependent Protein KinasesDataDimerizationElectrophysiology (science)ElectrostaticsEndocytosisEquilibriumExcisionF-ActinFunctional disorderGene ExpressionGoalsHealthHeart failureHydrolysisHypertensionHypertrophyImageInfusion proceduresIon ChannelKnowledgeLigationLinkLipidsMass Spectrum AnalysisMediatingMembraneMicrotubulesModelingMusMuscle CellsMyocardialNanostructuresNocodazoleOpticsOutputPTEN genePathologicPerfusionPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipase CPhospholipidsPhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlayProductionRegulationResolutionRoleRyR2SarcolemmaSignal PathwaySignal TransductionSirolimusStressStructureSurfaceSystemTechniquesTestingVasoconstrictor AgentsVentricularactin capping proteinblood pressure controlblood pressure regulationcalmodulin-dependent protein kinase IIcardioprotectionexperimental studyheart functionimaging approachimprovedin silicoinnovationlatrunculin Anovelpatch clamppreventreceptorrecruitresponsetheoriestooltrafficking
项目摘要
Project Summary
Experiments outlined in this application, suggest a novel paradigm, that acute angiotensin II (AngII)-stimulated
PIP2 hydrolysis triggers cardiac CaV1.2 channel internalization, providing a means to rapidly tune cellular
excitability and modulate EC-coupling in health. In contrast, we propose that sustained deficits in plasma
membrane CaV1.2 expression, and PIP2 depletion during chronic AngII can trigger a maladaptive compensatory
sympathetic response that improves cardiac function in the short-term but ultimately leads to progressive,
pathological cardiac remodeling, hypertrophy, and potentially arrhythmogenic Ca2+ signaling dysregulation. We
provide compelling preliminary data indicating that PIP2 hydrolysis, downstream of acute AngII/AT1R/Gq
activation, leads to endocytosis of cardiac CaV1.2 channels. We can visualize this endocytosis occurring
dynamically in live ventricular myocytes upon perfusion with physiological concentrations of AngII (100 nM).
Initial results indicate a shift in the balance between channel insertion and removal, such that AngII-stimulated
removal of PM channels, leads to an ~30 % reduction in PM CaV1.2 abundance. We observe a strikingly similar
%-reduction in three other separate experimental approaches, finding decreased ICa in electrophysiology studies,
reduced channel cluster area and expression in super-resolution imaging, and a loss of PM CaV1.2 in surface
biotinylation. We isolate PIP2 as the critical executor of this response, distinct from the activation of PKC and
arachidonic acid production that accompanies AT1R stimulation with experiments that bypass the receptors and
instead utilize a rapamycin-stimulated dimerization system to recruit a 4’,5’ phosphatase to the membrane and
deplete PIP2. Our results support a novel mechanistic role of PIP2 on Cav1.2 channel trafficking and expression
which can be tuned in response to physiological signaling cascades to modulate EC-coupling during acute
regulation of blood pressure. We further propose that chronic depletion of PIP2 during AngII/AT1R signaling
associated with heart failure causes: (i) sustained destabilization of PM CaV1.2 and long-lived expression deficits;
(ii) a compensatory sympathetic response to boost cardiac function involving activation of PKA and CaMKII that
acts in combination with direct AT1R-stimulated CaMKII to enhance CaV1.2 and RyR2 phosphorylation,
producing enhanced Po and diastolic leak that stimulates CaN/NFAT and hypertrophic gene expression; (iii)
enhanced IP3 production that also stimulates CaN/NFAT and hypertrophic gene expression, and (iv) cytoskeletal
instability as a result of depletion of cardioprotective PI(3,4,5)P3 and enhanced ROS-induced microtubule
catastrophe that disrupts channel delivery and promotes biomechanical instability, t-tubule and loss of dyads.
We propose to rigorously test these ideas in two specific aims described herein.
项目概要
本申请中概述的实验提出了一种新的范例,即急性血管紧张素 II (AngII) 刺激
PIP2 水解触发心脏 CaV1.2 通道内化,提供快速调节细胞的方法
相比之下,我们建议血浆中的持续缺陷。
慢性 AngII 期间膜 CaV1.2 表达和 PIP2 耗竭可引发适应不良代偿
交感神经反应可以在短期内改善心脏功能,但最终会导致进行性、
病理性心脏重塑、肥厚和潜在致心律失常的 Ca2+ 信号传导失调。
提供了令人信服的初步数据,表明 PIP2 水解是急性 AngII/AT1R/Gq 的下游
激活,导致心脏 CaV1.2 通道的内吞作用我们可以想象这种内吞作用的发生。
在灌注生理浓度的 AngII (100 nM) 后,活心室肌细胞中的动态变化。
初步结果表明通道插入和移除之间的平衡发生了变化,使得 AngII 刺激
去除 PM 通道,导致 PM CaV1.2 丰度减少约 30%,我们观察到惊人相似的情况。
%-其他三种单独实验方法的减少,在电生理学研究中发现 ICa 减少,
超分辨率成像中通道簇面积和表达减少,表面 PM CaV1.2 丢失
我们将 PIP2 分离为该反应的关键执行者,与 PKC 和 PKC 的激活不同。
通过绕过受体的实验,伴随 AT1R 刺激产生花生四烯酸
相反,利用雷帕霉素刺激的二聚化系统将 4',5' 磷酸酶募集到膜上,
我们的结果支持 PIP2 对 Cav1.2 通道运输和表达的新机制作用。
它可以根据生理信号级联进行调整,以在急性发作期间调节 EC 耦合
我们进一步提出 AngII/AT1R 信号转导过程中 PIP2 的慢性消耗。
与心力衰竭原因相关:(i) PM CaV1.2 持续不稳定和长期表达缺陷;
(ii) 代偿性交感神经反应,以促进 PKA 和 CaMKII 的心脏功能激活,涉及
与直接 AT1R 刺激的 CaMKII 联合作用,增强 CaV1.2 和 RyR2 磷酸化,
产生增强的 Po 和舒张期渗漏,刺激 CaN/NFAT 和肥大基因表达;
增强的 IP3 产生也刺激 CaN/NFAT 和肥大基因表达,以及 (iv) 细胞骨架
由于心脏保护作用的 PI(3,4,5)P3 耗尽和 ROS 诱导的微管增强而导致不稳定
破坏通道传递并促进生物力学不稳定、T 管和二元体损失的灾难。
我们建议在本文描述的两个具体目标中严格测试这些想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rose Ellen Dixon其他文献
Rose Ellen Dixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rose Ellen Dixon', 18)}}的其他基金
Lipid regulation of Cardiac Excitation-Contraction coupling
心脏兴奋-收缩耦合的脂质调节
- 批准号:
10626790 - 财政年份:2022
- 资助金额:
$ 60.23万 - 项目类别:
Molecular choreography of CaV1.2 channels in the aging myocardium
衰老心肌CaV1.2通道的分子编排
- 批准号:
10617814 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
Molecular choreography of CaV1.2 channels in the aging myocardium
衰老心肌CaV1.2通道的分子编排
- 批准号:
10399483 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
Molecular choreography of CaV1.2 channels in the aging myocardium
衰老心肌CaV1.2通道的分子编排
- 批准号:
9980760 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Protein modification and the aging phenotype of human skeletal muscle
蛋白质修饰与人类骨骼肌的衰老表型
- 批准号:
10593791 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别: