Identifying molecular traits associated with extreme human longevity using an AI based integrative approach
使用基于人工智能的综合方法识别与人类极端长寿相关的分子特征
基本信息
- 批准号:10745015
- 负责人:
- 金额:$ 23.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgingArtificial IntelligenceBiological AssayBiological FactorsBiological MarkersBiological ProcessBiological TestingBiologyBiology of AgingCell Culture TechniquesCentenarianChronicClinicalClinical ResearchCohort StudiesCollectionComplexComputational BiologyDataData SetDevelopmentDiseaseEpidemiologyFamilyFoundationsFramingham Heart StudyFundingGenomicsHumanInterventionInvestmentsKnowledgeLife ExpectancyLongevityMachine LearningMendelian randomizationModelingMolecularMultiomic DataMusNeural Network SimulationOutcomePathway interactionsPerformancePhenotypePhylogenetic AnalysisPhysiologyPredictive FactorProcessPrognostic MarkerProteinsResearchResearch DesignTestingTimeage relatedaging populationartificial intelligence methodbiomarker identificationbiomarker validationcohortdata harmonizationdata integrationdata managementdeep neural networkdesigndrug developmentexperimental studyfollow-upgenetic epidemiologyhealthy aginghigh dimensionalityhuman datamolecular markermultiple omicsneural network architecturenovelnovel markeroutcome predictionpredictive markerrisk mitigationtrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Life expectancy is increasing, and consequently, the burden of chronic age-related disease is also increasing.
Interventions and treatments that target the fundamental biological process of human aging have the potential
to mitigate risk of multiple diseases faced by our aging population. To develop interventions targeting the aging
process, one must identify predictive factors and biomarkers associated with the aging clinical endpoints. By
definition, the development of aging-based conditions and diseases takes time and requires a great deal of
follow-up time. To accelerate research in human aging, biomarkers of human aging and prognostic biomarkers
of healthy human aging are desperately needed. Without reliable biomarkers, early-stage drug development is
severely limited. In this application, we propose a framework to identify biomarkers of healthy human aging
using advanced Artificial Intelligence (AI) methods applied to a wide range of deeply phenotyped studies that
collected data from humans and non-humans. We have assembled a team with deep expertise in clinical
research of aging, genetic epidemiology, biology of aging, and AI. To identify biomarkers of aging through the
integrative analysis of omic data with AI, we propose the following specific aims: Aim 1 (R21, first stage).
Assemble datasets from the Framingham Heart Study (FHS) and the Longevity Consortium (LC) with multiple
omics to test AI methods and to identify biomarkers associated with human aging. Aim 2 (R21, first stage).
Test biologically informed AI Deep Neural Network (DNN) models with FHS and LC data to integrate omic
data, predict outcomes, and identify predictive omic features. Aim 3 (R33, second stage). Apply models from
public data onto exceptional longevity (EL) data. Aim 4 (R33, second stage). Establishing causal relationship
between biomarkers and longevity phenotypes through Mendelian Randomization (MR) analysis and cell
culture experiments.
项目概要/摘要
预期寿命在增加,因此,与年龄相关的慢性疾病的负担也在增加。
针对人类衰老的基本生物过程的干预和治疗具有潜力
减轻人口老龄化所面临的多种疾病的风险。制定针对老龄化的干预措施
在此过程中,我们必须确定与衰老临床终点相关的预测因素和生物标志物。经过
定义,基于衰老的状况和疾病的发展需要时间并且需要大量的
跟进时间。加速人类衰老、人类衰老生物标志物和预后生物标志物的研究
人类健康老龄化的迫切需要。如果没有可靠的生物标志物,早期药物开发就难以进行
受到严格限制。在此应用中,我们提出了一个框架来识别人类健康衰老的生物标志物
使用先进的人工智能(AI)方法应用于广泛的深度表型研究
从人类和非人类收集数据。我们组建了一支在临床领域拥有深厚专业知识的团队
衰老研究、遗传流行病学、衰老生物学和人工智能。通过以下方式识别衰老的生物标志物
通过对组学数据与人工智能的综合分析,我们提出以下具体目标:目标1(R21,第一阶段)。
将弗雷明汉心脏研究 (FHS) 和长寿联盟 (LC) 的数据集与多个
组学来测试人工智能方法并识别与人类衰老相关的生物标志物。目标 2(R21,第一阶段)。
使用 FHS 和 LC 数据测试基于生物学的 AI 深度神经网络 (DNN) 模型,以集成组学
数据、预测结果并识别预测组学特征。目标 3(R33,第二阶段)。应用模型来自
公共数据到超长寿命(EL)数据。目标 4(R33,第二阶段)。建立因果关系
通过孟德尔随机化 (MR) 分析和细胞分析生物标志物与长寿表型之间的关系
培养实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Spencer Evans其他文献
Daniel Spencer Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Spencer Evans', 18)}}的其他基金
Cross-Species Analysis to Identify Conserve Longevity-Related Pathways and Putative Drug Targets
跨物种分析以确定与长寿相关的途径和假定的药物靶点
- 批准号:
10223817 - 财政年份:2019
- 资助金额:
$ 23.81万 - 项目类别:
Cross-Species Analysis to Identify Conserve Longevity-Related Pathways and Putative Drug Targets
跨物种分析以确定与长寿相关的途径和假定的药物靶点
- 批准号:
10223817 - 财政年份:2019
- 资助金额:
$ 23.81万 - 项目类别:
相似国自然基金
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
塑料光老化介导的微(纳)塑料形成和光解产物释放对雄性生殖内分泌的干扰研究
- 批准号:22376195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯乙烯-丁二烯共聚物力化学老化的自由基捕获光环加成协同修复机制
- 批准号:22303065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
A population-based study of deep learning derived organ and tissue measures for accelerated aging using repurposed abdominal CT images
使用重新调整用途的腹部 CT 图像对深度学习衍生的器官和组织加速衰老措施进行基于人群的研究
- 批准号:
10795414 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
Architectonic analysis of complex cortical circuits in healthy and diseased brain
健康和患病大脑中复杂皮质回路的结构分析
- 批准号:
10749697 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 23.81万 - 项目类别: