Mapping the single cell state basis of metastasis in space and time
绘制空间和时间转移的单细胞状态基础
基本信息
- 批准号:10738579
- 负责人:
- 金额:$ 67.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-12 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsArchitectureAutomobile DrivingBehaviorBiological AssayBiological ModelsBirth RateCancerousCause of DeathCellsCellular MorphologyCessation of lifeClustered Regularly Interspaced Short Palindromic RepeatsDataDevelopmentDevelopmental GeneDiseaseDistantEcosystemEnvironmentEnzymesEpitheliumExhibitsGenesGenetic TranscriptionGenetically Engineered MouseGlandGoalsGrowthHybridsInvadedKeratinLearningLinkLiteratureLongevityMachine LearningMalignant NeoplasmsMammary NeoplasmsMammary glandMapsMeasurementModelingMolecularMorphogenesisNeoplasm MetastasisNoninfiltrating Intraductal CarcinomaOrganPatient-Focused OutcomesPatientsPeriodicityPharmaceutical PreparationsPrimary NeoplasmProcessProteinsPublishingRNARegulator GenesResolutionSourceStructureSystems BiologyTailTestingTimeTissuesUnited StatesVeinsVimentinWeightcancer cellcancer sitecandidate validationcell typecomputerized toolsdifferential expressionhigh dimensionalityhigh resolution imagingin vivolearning algorithmmalignant breast neoplasmmammary epitheliummigrationneoplasticnew therapeutic targetpatient derived xenograft modelpreventprogramssingle cell sequencingsingle-cell RNA sequencingsmall hairpin RNAsmall moleculespatiotemporalstatisticsthree dimensional cell culturetooltranscriptometranscriptomicstransfer learningtumortumor progression
项目摘要
We propose to leverage recent advances in machine learning and systems biology to enable high
dimensional molecular assessment of the dynamic cell state transitions driving metastasis. We hypothesize that
the interaction between a cancer cell's intrinsic reactivation of developmental programs with its spatiotemporal
context determines its metastatic potential. We will exploit developmental changes in the mammary epithelium
to define their cell state basis and map the aberrant reuse of these transcriptional programs in metastatic disease.
Both normal mammary epithelium and breast tumors undergo dramatic changes in differentiation and
tissue architecture, and loss of differentiation correlates with poor patient outcomes. We developed 3D culture
assays that recapitulate epithelial morphogenesis and cancer growth, invasion, and metastatic colony formation.
The key concepts arising are that: (1) a conserved process of dedifferentiation and loss of polarity accompanies
both normal and neoplastic morphogenesis and (2) the cancer cells in luminal and basal breast cancer
recapitulate basal epithelial and hybrid EMT programs. Recent advances in single cell sequencing, spatial
transcriptomics, and machine learning enable transcriptome-wide resolution of these states in tissue, quantitative
comparison of normal and cancerous cell states, and the identification of targetable cell state regulators.
Aim 1: Map cell states in space and time during development, tumor formation, and metastasis. We will
generate scRNA-seq data from normal glands, ductal carcinoma in situ, and invasive tumors collected at different
ages and also longitudinally in 3D culture. We will use our CoGAPS algorithm to infer cell states and their
temporal progression. We will then use our patternMarker2 statistic to identify cell state makers for MERSCOPE
analysis in tissue. We will map these states in normal glands, primary tumors, and metastases isolated from
genetically engineered mouse models (GEMM) and patient derived xenografts (PDX).
Aim 2: Model the dynamics of differentiation state during development and cancer progression. To define
the effect of cell state on metastatic progression, we will construct an ecosystem-style multinomial diversity
model. We will initialize the model with literature-based parameter values to predict the interactions between cell
type and cell state. We will then extend the model to use the weights assigned by CoGAPS to each cell, thereby
linking gene regulatory programs to the cell state changes driving metastasis.
Aim 3: Validate candidate regulators of metastatic cell state transitions in 3D culture and in vivo.
To isolate the genes regulating metastasis, we will use our transfer learning algorithm, projectR, to score each
cancer cell for its relative utilization of scRNA-seq-defined molecular programs. We will then use our
projectionDriver statistic to identify differentially expressed (DE) genes at sites of cancer invasion, relative to the
tumor interior. DE genes will be tested genetically in 3D culture assays modeling invasion and colony formation
and then in orthotopic and tail vein metastasis assays in vivo.
我们建议利用机器学习和系统生物学的最新进展来实现高
驱动转移的动态细胞状态转变的维度分子评估。我们假设
癌细胞内在的发育程序再激活与其时空之间的相互作用
背景决定其转移潜力。我们将利用乳腺上皮的发育变化
定义它们的细胞状态基础并绘制这些转录程序在转移性疾病中的异常重用。
正常乳腺上皮和乳腺肿瘤在分化和分化方面都会发生巨大的变化。
组织结构和分化丧失与患者预后不良相关。我们开发了3D文化
概括上皮形态发生和癌症生长、侵袭和转移集落形成的测定。
产生的关键概念是:(1)保守的去分化过程和极性丧失伴随着
正常和肿瘤形态发生以及 (2) 管腔和基底乳腺癌中的癌细胞
概括基底上皮和混合 EMT 程序。单细胞测序、空间测序的最新进展
转录组学和机器学习能够在转录组范围内解决组织中的这些状态,定量
正常细胞和癌细胞状态的比较,以及可靶向细胞状态调节剂的鉴定。
目标 1:绘制细胞在发育、肿瘤形成和转移过程中的空间和时间状态图。我们将
从不同部位收集的正常腺体、导管原位癌和侵袭性肿瘤生成 scRNA-seq 数据
年龄以及 3D 文化中的纵向。我们将使用 CoGAPS 算法来推断细胞状态及其
时间进展。然后,我们将使用 PatternMarker2 统计数据来识别 MERSCOPE 的细胞状态制造者
组织中的分析。我们将绘制正常腺体、原发性肿瘤和从肿瘤中分离出来的转移瘤中的这些状态。
基因工程小鼠模型(GEMM)和患者来源的异种移植物(PDX)。
目标 2:对发育和癌症进展过程中分化状态的动态进行建模。定义
细胞状态对转移进展的影响,我们将构建一个生态系统式的多项多样性
模型。我们将使用基于文献的参数值初始化模型,以预测细胞之间的相互作用
类型和细胞状态。然后,我们将扩展模型以使用 CoGAPS 分配给每个单元格的权重,从而
将基因调控程序与驱动转移的细胞状态变化联系起来。
目标 3:验证 3D 培养和体内转移细胞状态转变的候选调节因子。
为了分离调节转移的基因,我们将使用我们的迁移学习算法 ProjectR 对每个基因进行评分
癌细胞对 scRNA-seq 定义的分子程序的相对利用。然后我们将使用我们的
投影驱动统计,用于识别癌症侵袭部位的差异表达(DE)基因,相对于
肿瘤内部。 DE 基因将在模拟入侵和集落形成的 3D 培养测定中进行基因测试
然后进行体内原位和尾静脉转移测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Josef Ewald其他文献
Andrew Josef Ewald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Josef Ewald', 18)}}的其他基金
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
9891969 - 财政年份:2018
- 资助金额:
$ 67.96万 - 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
10372006 - 财政年份:2018
- 资助金额:
$ 67.96万 - 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
9490092 - 财政年份:2018
- 资助金额:
$ 67.96万 - 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
10524181 - 财政年份:2018
- 资助金额:
$ 67.96万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
- 批准号:
10659833 - 财政年份:2023
- 资助金额:
$ 67.96万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 67.96万 - 项目类别:
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 67.96万 - 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
- 批准号:
10820286 - 财政年份:2023
- 资助金额:
$ 67.96万 - 项目类别:
Bridging bench to bedside with aneurotechnology cross-development platform
通过神经技术交叉开发平台将工作台与床边桥接起来
- 批准号:
10640424 - 财政年份:2023
- 资助金额:
$ 67.96万 - 项目类别: