Causal Effect Estimation of Regulatory Molecules
调节分子的因果效应估计
基本信息
- 批准号:10626830
- 负责人:
- 金额:$ 24.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse effectsAdvisory CommitteesAffectAlgorithmsAutoimmunityAwardBase PairingBindingBinding SitesBiologicalBiological SciencesCardiovascular DiseasesCellsChIP-seqCollaborationsCommunitiesComplexComprehensive Cancer CenterComputational BiologyDNADataData ScienceData SourcesDiabetes MellitusDifferential EquationDimensionsDiseaseDrug DesignEconomicsFacultyGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsHospitalsKnowledgeLinear ModelsLiteratureMachine LearningMalignant NeoplasmsMathematicsMeasuresMentorsMessenger RNAMethodsMicroRNAsModelingModernizationMolecular BiologyNatural experimentOhioOutcomeOutputPathway interactionsPerformancePharmaceutical PreparationsPhasePhenotypePositioning AttributeRegulator GenesRegulatory ElementResearchRoleSample SizeSamplingSiteSomatic MutationSourceTechniquesThe Cancer Genome AtlasTissuesToxic effectTrainingTransfectionTranslationsUniversitiescancer cellcareer developmentcausal modelcollaborative environmentcomputer studiescomputerized toolsdeep neural networkdesignexperimental studyfeature selectionheterogenous datahigh dimensionalityhuman diseaseimprovedinsightmachine learning frameworkmachine learning methodmachine learning modelmachine learning predictionphysical modelpredicting responsepredictive modelingpredictive toolsresponsestatistical and machine learningstatisticstargeted treatmenttenure tracktranscription factortranscriptometumorvector
项目摘要
Project Summary/Abstract
Transcription factors and microRNAs are essential regulatory molecules (RM) that control messenger RNAs
(mRNA) and are known to be dysregulated in human diseases. Each RM may affect multiple pathways of the
cell which is both a blessing and a curse. If a therapy targets the proper RM, it can attack the disease from
multiple fronts and increase efficacy. On the other hand, targeted therapy may result in serious adverse effects
due to our limited knowledge of the downstream causal effect of RM manipulation. Although the local bindings
between single RMs and their targets have been studied computationally and experimentally, the intensity of
functional consequences of such bindings on the transcriptome is unclear. Here, I propose statistical machine
learning techniques and causal inference methods to predict the observed variability of gene expression
using only regulatory molecules and estimate their downstream causal effect on the entire
transcriptome. To achieve this goal, I start in Aim 1 by building a multi-response predictive model to predict
the whole transcriptome using only RMs. This goal is challenging because the dimension of the response vector
is more than the number of samples and I will use techniques from high-dimensional statistics to address this
issue. In Aim 2, I will go beyond predictive modeling by estimating the causal effect of RMs on the transcriptome
using invariant causal prediction. I will leverage the rapidly growing literature which connects causal inference
to invariant prediction accuracy across heterogeneous data sources to infer the causal effect of RMs on mRNA.
Having developed both predictive and causal models of RMs contribution to gene regulation, in Aim 3 during the
R00 phase, I will focus on the most recent advances in double/debiased machine learning which allows the
use of scalable machine learning methods for reliable estimation of causal effect of RMs on transcription. My
proposed research will bring the most advanced statistical machine learning and causal inference techniques to
genomics research and help design more effective targeted therapies by providing insights into the global role
of RMs in gene expression regulation. During the training phase of the award, with the support of my outstanding
mentoring team and scientific advisory committee, I will gain expertise in molecular biology and genomics while
perfecting my knowledge of causal inference and machine learning. The Ohio State University Comprehensive
Cancer Center – James Hospital and the Mathematical Biosciences Institute will provide me with the ideal
interdisciplinary environment to bridge data science and genomics and will help me achieve my career
development goals and transition to a tenure-track faculty position.
项目概要/摘要
转录因子和 microRNA 是控制信使 RNA 的重要调节分子 (RM)
(mRNA) 并已知在人类疾病中失调。
如果治疗针对正确的 RM,它可以从根本上攻击疾病。
另一方面,靶向治疗可能会导致严重的副作用。
由于我们对 RM 操纵的下游因果效应的了解有限,尽管局部绑定。
通过计算和实验研究了单个 RM 与其目标之间的强度
这种结合对转录组的功能影响尚不清楚。在这里,我提出了统计机器。
学习技术和因果推理方法来预测观察到的基因表达的变异性
仅使用调节分子并估计其对整个下游的因果影响
为了实现这一目标,我从目标 1 开始,构建了一个多响应预测模型来进行预测。
仅使用 RM 来实现整个转录组 这个目标具有挑战性,因为响应向量的维度。
超过了样本的数量,我将使用高维统计技术来解决这个问题
在目标 2 中,我将通过估计 RM 对转录组的因果影响来超越预测模型。
使用不变的因果预测,我将利用快速增长的连接因果推理的文献。
跨异构数据源的不变预测精度来推断 RM 对 mRNA 的因果效应。
在目标 3 中,开发了 RM 对基因调控贡献的预测模型和因果模型
R00 阶段,我将重点关注双重/去偏机器学习的最新进展,这使得
使用可扩展的机器学习方法来可靠估计 RM 对转录的因果影响。
拟议的研究将把最先进的统计机器学习和因果推理技术带到
基因组学研究并通过提供对全球作用的见解来帮助设计更有效的靶向疗法
在该奖项的培训阶段,在我杰出的支持下。
指导团队和科学顾问委员会,我将获得分子生物学和基因组学方面的专业知识,同时
完善我的因果推理和机器学习知识。
癌症中心 – 詹姆斯医院和数学生物科学研究所将为我提供理想的选择
连接数据科学和基因组学的跨学科环境将帮助我实现我的职业生涯
发展目标以及向终身教授职位的过渡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Asiaeetaheri其他文献
Amir Asiaeetaheri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Asiaeetaheri', 18)}}的其他基金
Causal Effect Estimation of Regulatory Molecules
调节分子的因果效应估计
- 批准号:
10455118 - 财政年份:2021
- 资助金额:
$ 24.06万 - 项目类别:
Causal Effect Estimation of Regulatory Molecules
调节分子的因果效应估计
- 批准号:
10463880 - 财政年份:2021
- 资助金额:
$ 24.06万 - 项目类别:
Causal Effect Estimation of Regulatory Molecules
调节分子的因果效应估计
- 批准号:
10040882 - 财政年份:2020
- 资助金额:
$ 24.06万 - 项目类别:
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidation of mitochondrial mechanisms critical to mediating PFAS neurotoxicity
阐明对介导 PFAS 神经毒性至关重要的线粒体机制
- 批准号:
10805097 - 财政年份:2023
- 资助金额:
$ 24.06万 - 项目类别:
Impact of the Gut Microbiome on Astrocyte Barrier Function
肠道微生物组对星形胶质细胞屏障功能的影响
- 批准号:
10723837 - 财政年份:2023
- 资助金额:
$ 24.06万 - 项目类别:
Defining kinase interaction pathways to enhance anti-cancer efficacy and minimize associated morbidities of kinase inhibitor drugs.
定义激酶相互作用途径,以增强抗癌功效并最大限度地减少激酶抑制剂药物的相关发病率。
- 批准号:
10644554 - 财政年份:2023
- 资助金额:
$ 24.06万 - 项目类别:
Understanding the relationship between nurse staffing and outcomes: impact of individual nurse education, expertise, and effort level on individual patient outcomes
了解护士人员配置与结果之间的关系:护士个体教育、专业知识和努力水平对个体患者结果的影响
- 批准号:
10642570 - 财政年份:2023
- 资助金额:
$ 24.06万 - 项目类别:
Incorporating Geriatric Constructs into Management of Inflammatory Bowel Diseases in Older Adults
将老年结构纳入老年人炎症性肠病的治疗
- 批准号:
10729893 - 财政年份:2023
- 资助金额:
$ 24.06万 - 项目类别: