Building and Deploying a Genomic-Medicine Risk Assessment Model for Diverse Primary Care Populations.
为不同的初级保健人群建立和部署基因组医学风险评估模型。
基本信息
- 批准号:10630415
- 负责人:
- 金额:$ 81.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-16 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsCaringClinicalComplexDataData CollectionEffectivenessFamilyFamily health statusFrequenciesGenomic medicineGenomicsGoalsHealth systemHybridsIndividualIndustryInheritedInsurance CarriersKnowledgeLaboratoriesLearningModelingOutcomePathway interactionsPatientsPopulationPopulation HeterogeneityPreventive carePrimary Health CareProviderRandomizedRecording of previous eventsResource-limited settingResourcesRiskRisk AssessmentRisk ManagementService delivery modelSocial NetworkSystemTest ResultTestingTextTimeVoicebaseclinical careclinical decision-makingclinical research sitecost effectivenessdesigndisorder riskeffectiveness outcomegenetic testinghereditary riskhigh riskimplementation evaluationimplementation outcomesliteracypatient populationprogramsresponserisk sharingscreeninguptake
项目摘要
Family health history (FHH), a critical component of genomic medicine that is essential for both identifying
individuals at risk for hereditary conditions and for contextualizing results of genetic testing, continues to be
broadly underutilized and underappreciated in clinical care. Barriers to adequate data collection and synthesis
are numerous and cross all clinical stakeholders: patients, providers, and health systems. Significantly, they
include the pervasive view that FHH is unimportant except in select cases and that it rarely contributes to
clinical decision making. With this perspective, few providers have been willing to allocate precious time to
collect detailed FHHs or to learn the complex algorithms required to synthesize FHH data into actionable care
plans. However, in studies of systematic FHH-based risk assessments in unselected populations, 25% of
patients meet risk criteria for (actionable) hereditary conditions. FHH-based risk assessment programs have
emerged to address these barriers, but as designed do not meet the needs of low literacy, low resource
populations. The goal of this proposal is to develop a scalable end-to-end solution for risk assessment and
management that meets the needs of low resource settings. Our central hypothesis is that combining FHH-
driven risk assessment, a literacy-enhanced interface using voice-to-text response capture (like ‘Siri’), family
engagement (through social networking platforms for data gather and risk sharing), and a genetic testing
delivery system, will create a solution that engages and increases the proportion of diverse patients who are
identified as at increased risk, who undergo testing, and, when appropriate, who initiate cascade screening
among relatives. In this proposal we will define and deploy this new care delivery model as the “Genomic
medicine Risk Assessment Care for Everyone” (GRACE). To this end we will 1) develop and deploy the
model using pre-implementation assessments at clinical sites with highly diverse patient populations to select
the most appropriate integration options and pathways for both patients and providers; and 2) perform a
randomized implementation-effectiveness pragmatic hybrid trial to assess implementation and effectiveness
outcomes relevant to these diverse populations. Outcomes will include reach, uptake, clinical utility,
accessibility, genetic testing frequency, genetic testing results, and cost-effectiveness. In addition we will
convene an advisory panel of stakeholders from industry (laboratories, insurers), providers, patients, and
health system to understand sustainability and address knowledge gaps that will promote access when the trial
is over.
家族健康史 (FHH) 是基因组医学的重要组成部分,对于识别家族健康史至关重要
面临遗传性疾病风险和基因检测结果背景的个人,仍然是
在临床护理中普遍未得到充分利用和重视 充分收集和综合数据的障碍。
数量众多,涉及所有临床利益相关者:患者、提供者和卫生系统。
包括这样一种普遍观点:FHH 除了在特定情况下并不重要,而且它很少有助于
从这个角度来看,很少有提供者愿意分配宝贵的时间来制定临床决策。
收集详细的 FHH 或学习将 FHH 数据合成为可行护理所需的复杂算法
然而,在对未选定人群进行基于 FHH 的系统风险评估的研究中,25% 的人没有计划。
患者符合基于 FHH 的风险评估计划的(可操作的)遗传性疾病的风险标准。
为解决这些障碍而出现,但其设计并不能满足低识字率、低资源的需求
该提案的目标是开发一个可扩展的端到端解决方案,用于风险评估和评估。
我们的中心假设是结合 FHH- 来满足低资源环境的需求。
驱动的风险评估、使用语音到文本响应捕获(如“Siri”)的读写能力增强界面、家庭
参与(通过社交网络平台进行数据收集和风险分担),以及基因检测
交付系统,将创建一个解决方案,吸引并增加不同患者的比例
被确定为风险增加的人,接受测试的人,以及在适当的情况下启动级联筛查的人
在本提案中,我们将这种新的护理服务模式定义并部署为“基因组”。
医学风险评估关爱每个人”(GRACE)为此,我们将 1) 开发和部署
模型使用临床地点的实施前评估来选择高度多样化的患者群体
对患者和提供者来说最合适的整合选项和途径;以及 2) 执行
评估实施情况和有效性的随机实施-有效性实用混合试验
与这些不同人群相关的成果将包括覆盖范围、吸收率、临床效用、
可及性、基因检测频率、基因检测结果和成本效益。
召集来自行业(实验室、保险公司)、提供商、患者和其他利益相关者的咨询小组
卫生系统了解可持续性并解决知识差距,这将促进试验时的获取
结束了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lori Ann Orlando其他文献
Lori Ann Orlando的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lori Ann Orlando', 18)}}的其他基金
Improving identification and healthcare for patients with Inherited Cancer Syndromes: Evidence-based EMR implementation using a web-based computer platform
改善遗传性癌症综合征患者的识别和医疗保健:使用基于网络的计算机平台实施基于证据的 EMR
- 批准号:
10831647 - 财政年份:2023
- 资助金额:
$ 81.27万 - 项目类别:
Deploying a genomic-medicine risk assessment model for diverse primary care populations and settings
为不同的初级保健人群和环境部署基因组医学风险评估模型
- 批准号:
10227463 - 财政年份:2021
- 资助金额:
$ 81.27万 - 项目类别:
Deploying a genomic-medicine risk assessment model for diverse primary care populations and settings
为不同的初级保健人群和环境部署基因组医学风险评估模型
- 批准号:
10470752 - 财政年份:2021
- 资助金额:
$ 81.27万 - 项目类别:
Building and Deploying a Genomic-Medicine Risk Assessment Model for Diverse Primary Care Populations.
为不同的初级保健人群建立和部署基因组医学风险评估模型。
- 批准号:
9594066 - 财政年份:2018
- 资助金额:
$ 81.27万 - 项目类别:
Building and Deploying a Genomic-Medicine Risk Assessment Model for Diverse Primary Care Populations.
为不同的初级保健人群建立和部署基因组医学风险评估模型。
- 批准号:
10468030 - 财政年份:2018
- 资助金额:
$ 81.27万 - 项目类别:
Building and Deploying a Genomic-Medicine Risk Assessment Model for Diverse Primary Care Populations.
为不同的初级保健人群建立和部署基因组医学风险评估模型。
- 批准号:
10220108 - 财政年份:2018
- 资助金额:
$ 81.27万 - 项目类别:
Building and Deploying a Genomic-Medicine Risk Assessment Model for Diverse Primary Care Populations.
为不同的初级保健人群建立和部署基因组医学风险评估模型。
- 批准号:
9789920 - 财政年份:2018
- 资助金额:
$ 81.27万 - 项目类别:
Building and Deploying a Genomic-Medicine Risk Assessment Model for Diverse Primary Care Populations.
为不同的初级保健人群建立和部署基因组医学风险评估模型。
- 批准号:
9892151 - 财政年份:2018
- 资助金额:
$ 81.27万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 81.27万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 81.27万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 81.27万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 81.27万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 81.27万 - 项目类别: