Elucidating Genes Regulating Sleep Using Diversity Outbred Mice
利用多样性远交小鼠阐明调节睡眠的基因
基本信息
- 批准号:10623210
- 负责人:
- 金额:$ 25.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsBehaviorBiological ModelsBreedingCaenorhabditis elegansCandidate Disease GeneCharacteristicsChromosome 3Circadian RhythmsComplexComplex Genetic TraitDNADarknessDataDihydropyrimidine DehydrogenaseDrosophila genusElectroencephalographyEnvironmentFollow-Up StudiesGenesGeneticGenetic EpistasisGenetic VariationGenetic studyGenomeGenotypeHaplotypesHeritabilityHippocampusHumanInheritedKnock-outKnockout MiceMachine LearningManuscriptsMeasurementMeasuresMethodsMouse StrainsMovementMusMutagensPhenotypePopulationPopulation HeterogeneityPreparationQuantitative Trait LociQuestionnairesRandomizedResourcesRunningSamplingSleepSleep DeprivationSleep FragmentationsSleep StagesStainsTechniquesTestingValidationVariantWorkZebrafishbiobankcandidate validationcausal variantcircadiandesigngene interactiongenetic approachgenetic architecturegenetic associationgenetic variantgenome wide association studyhigh riskinsightinterestlearning strategyloss of functionmosaicmouse modelnovelphenotypic datarare variantresponsescreeningtraittranscriptome sequencingvigilancewhole genome
项目摘要
ABSTRACT
Most aspects of sleep and circadian rhythm are heritable, i.e., are in part determined by sequence variations
in DNA. Multiple approaches are currently being applied to identify relevant genes influence sleep. One cutting-
edge strategy being employed is high-diversity mouse models – particularly Diversity Outbred mice. These mice
are derived through a novel randomized outbreeding approach seeded by the Collaborative Cross mice. This
creates a genetically heterogeneous population of mice with genetic diversity approaching that in human
populations. The genome of each Diversity Outbred mouse is a unique mosaic inherited from the original 8
Founder strains of mice. Accurate measurement of the genetic variation across the whole genome can be
obtained using a specialized genotyping array. This data can then be combined with careful phenotyping of large
numbers of Diversity Outbred mice to identify small quantitative trait loci containing only a few candidate causal
genes. To utilize this resource to identify genes relevant for sleep, we have developed a high-throughput
phenotyping pipeline that assesses multiple heritable aspects of sleep and circadian rhythm, including amounts
of sleep, degree of sleep consolidation, vigilance, sleep drive, and circadian period. After discovering important
loci using this high-throughput approach, robust validation of identified genes is carried out with gold-standard
EEG/EMG recording of sleep in relevant strains of Collaborative Cross mice and, subsequently, in mice with a
knockout of the predicted causal gene. Using this exact approach, we have already identified a novel gene
regulating sleep in mice. Since this discovery, we have further increased the size of our phenotyped and
genotyped sample of Diversity Outbred mice, and have now identified several other interesting quantitative trait
loci containing candidate causal genes requiring validation. While existing analyses have shown promise in
identifying important genes for sleep in mice, evidence from our work supports sleep as a complex genetic trait.
That is, the phenotype is not simply determined by a single gene variant. Rather, there are likely to be complex
genetic effects involving multiple interacting genes that determine additional variability in sleep/wake behavior.
However, current analysis approaches in Diversity Outbred mice focus on additive genetic associations, and do
not allow us to adequately address this concept. Thus, to uncover these more complex genetic effects, we
propose to employ novel machine learning approaches to the wealth of available genetic and phenotypic data
we have for hundreds of Diversity Outbred mice. Altogether, this is a high-risk, high-impact proposal appropriate
for an R21 given the novel analytic strategy based on machine learning and the focus on validation of candidate
causal genes affecting sleep. If successful, this proposal will provide new insights into the genetic underpinnings
of sleep and a novel analysis resource to benefit any ongoing or completed studies in Diversity Outbred mice.
抽象的
睡眠和昼夜节律的大多数方面都是可遗传的,即部分由序列变化决定
目前正在采用多种方法来识别影响睡眠的相关基因。
所采用的优势策略是高多样性小鼠模型——特别是多样性远交小鼠。
是通过协作杂交小鼠播种的新型随机近交方法衍生的。
创建了一个遗传异质性的小鼠群体,其遗传多样性接近人类
每只 Diversity Outbred 小鼠的基因组都是继承自原始 8 只小鼠的独特嵌合体。
可以准确测量整个基因组的遗传变异。
然后可以将这些数据与大型的仔细表型分析相结合。
数量的多样性远交小鼠来识别仅包含少数候选因果关系的小数量性状基因座
为了利用这种资源来识别与睡眠相关的基因,我们开发了一种高通量的方法。
表型分析管道,评估睡眠和昼夜节律的多个遗传方面,包括数量
睡眠时间、睡眠巩固程度、警惕性、睡眠巩固驱动力和昼夜节律在发现重要后。
使用这种高通量方法定位基因座,并按照金标准对已识别基因进行稳健验证
脑电图/肌电图记录了协作交叉小鼠相关品系以及随后具有
使用这种精确的方法敲除预测的因果基因,我们已经鉴定了一个新基因。
自从这一发现以来,我们进一步增加了表型和睡眠的大小。
对多样性远交小鼠样本进行基因分型,现已鉴定出其他几个有趣的数量性状
包含需要验证的候选因果基因的基因座,而现有的分析已显示出希望。
确定了小鼠睡眠的重要基因,我们的工作证据支持睡眠是一种复杂的遗传特征。
也就是说,表型不是简单地由单个基因变异决定的,而是可能是复杂的。
遗传效应涉及多个相互作用的基因,这些基因决定了睡眠/觉醒行为的额外变异性。
然而,目前对多样性远交小鼠的分析方法侧重于加性遗传关联,并且确实
不允许我们充分解决这个概念因此,为了揭示这些更复杂的遗传效应,我们。
提议采用新颖的机器学习方法来获取大量可用的遗传和表型数据
总的来说,这是一个高风险、高影响力的建议。
对于 R21,考虑到基于机器学习的新颖分析策略以及对候选验证的关注
如果成功,该提议将为遗传基础提供新的见解。
睡眠和新颖的分析资源,有利于任何正在进行或已完成的多样性远交小鼠研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan I Pack其他文献
Allan I Pack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan I Pack', 18)}}的其他基金
Going from Genetic Associations to Identification of Causative Genes
从遗传关联到致病基因的识别
- 批准号:
10555812 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别:
Developing a P4 Medicine Approach to Obstructive Sleep Apnea
开发治疗阻塞性睡眠呼吸暂停的 P4 医学方法
- 批准号:
10555805 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别:
Elucidating Genes Regulating Sleep Using Diversity Outbred Mice
利用多样性远交小鼠阐明调节睡眠的基因
- 批准号:
10432369 - 财政年份:2022
- 资助金额:
$ 25.91万 - 项目类别:
Genetic Approaches to Sleep/Wake and Response to Sleep Loss in Mice
小鼠睡眠/觉醒的遗传方法以及对睡眠不足的反应
- 批准号:
8708190 - 财政年份:2012
- 资助金额:
$ 25.91万 - 项目类别:
Epigenetics: Opportunities for Sleep and Circadian Research
表观遗传学:睡眠和昼夜节律研究的机会
- 批准号:
8399335 - 财政年份:2012
- 资助金额:
$ 25.91万 - 项目类别:
Genetic Approaches to Sleep/Wake and Response to Sleep Loss in Mice
小鼠睡眠/觉醒的遗传方法以及对睡眠不足的反应
- 批准号:
8879193 - 财政年份:2012
- 资助金额:
$ 25.91万 - 项目类别:
Genetic Approaches to Sleep/Wake and Response to Sleep Loss in Mice
小鼠睡眠/觉醒的遗传方法以及对睡眠不足的反应
- 批准号:
8372470 - 财政年份:2012
- 资助金额:
$ 25.91万 - 项目类别:
Genetic Approaches to Sleep/Wake and Response to Sleep Loss in Mice
小鼠睡眠/觉醒的遗传方法以及对睡眠不足的反应
- 批准号:
8527842 - 财政年份:2012
- 资助金额:
$ 25.91万 - 项目类别:
Endophenotypes of Sleep Apnea and Role of Obesity
睡眠呼吸暂停的内表型和肥胖的作用
- 批准号:
8134814 - 财政年份:2009
- 资助金额:
$ 25.91万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 25.91万 - 项目类别: