Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
基本信息
- 批准号:10621489
- 负责人:
- 金额:$ 59.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAlgorithmsArtificial IntelligenceAttention deficit hyperactivity disorderAutomobile DrivingBehavioralBenignBiological MarkersBiological ModelsBirthCaringCentral Nervous SystemCharacteristicsChildClinicalClinical DataClinical MarkersCollaborationsComplexDataData SetDevelopmentDiagnosisDiseaseDisease ManagementDisease SurveillanceElectronic Health RecordEnvironmentEthnic OriginFamilyFamily memberGenetic DiseasesGerm-Line MutationGliomaHealthcare SystemsIndividualInformaticsInheritedInstitutionKnowledgeLongevityMachine LearningMalignant - descriptorManualsMeasurableMeasuresMethodsModelingMorbidity - disease rateNF1 geneNeurofibromatosesNeurofibromatosis 1OpticsOutcomePathway interactionsPatientsPatternPediatric HospitalsPerformancePeripheral Nervous System NeoplasmsPhenotypePhysiciansPopulationPredispositionPreventive measurePrognostic MarkerPsychometricsQuality of lifeRaceRegistriesReproducibilityResearchRiskRisk AssessmentSafetySiteStructureSymptomsSyndromeTechniquesTimeUniversitiesWashingtonartificial intelligence methodautosomebehavioral phenotypingbody systemburden of illnesscare outcomescare providersclinical databaseclinical decision supportclinical decision-makingclinical heterogeneityclinical phenotypeclinical research siteclinically actionablecomparativecostdata harmonizationdeep learningdisease phenotypedisease prognosisdisorder riskelectronic structuregene interactionimprovedindividual patientinsightinter-individual variationinterestmachine learning modelmultiple data sourcesmultiscale datanovelphenotyping algorithmpoint of careprecision medicinepredictive modelingpredictive toolsprognosticresponserisk stratificationscoliosissexstructured datasuccesssupport toolstext searchingtooltumorverification and validation
项目摘要
Project Summary/Abstract
Neurofibromatosis (NF) encompasses a set of complex genetic disorders that affect almost every organ system
and increase risk for the development of benign and malignant central and peripheral nervous system tumors. Of
the three types of NF, Neurofibromatosis Type 1 (NF1) is the most prevalent occurring in approximately 1 in
every 3,000 births without predilection for race, sex, or ethnicity. While NF1 is inherited in a fully penetrant
autosomal dominant manner, there is wide inter-individual variability with respect to clinical features and their
impact on patient morbidity. Clinical heterogeneity is a pervasive challenge for clinicians and families, as
the management of children and adults with NF1 remains largely reactive, without reliable biomarkers
or predictive models for early risk stratification and/or prognostic assessment at the time of diagnosis.
Traditional approaches, which focus on identifying a single clinical or biological marker that can be measured
and used to assess disease risk or trajectory in NF1, have achieved limited success and have hindered progress
in the development of precision medicine for NF1-affected individuals. In response to these challenges, and with
the opportunity to improve the care of individuals with NF1, we aim to verify and validate an alternative and
generalizable approach for developing artificial intelligence (AI)-based clinical decision support tools for NF1
sub-phenotypes, implemented and evaluated in a comparative manner across two clinical sites.
Our proposed project will first generate a multi-scale data set using a text-mining based clinical phenotyping
algorithm to integrate and harmonize data from multiple sources such as clinical databases, structured
electronic health records, and unstructured clinical notes. Secondly, we will develop AI-based pipelines
capable of generating predictive models and tools to identify disease risk for three critical NF1 sub-
phenotypes (OPGs, scoliosis, and ADHD). We will then evaluate the models for quantitative accuracy and
clinical actionability at the point of care with the help of NF1 clinicians. Finally, we will validate these methods
and models across multiple sites, so that we can better understand the challenges to generalizing and
transporting such predictive models based across different healthcare systems, environments, and populations.
We anticipate that the use of artificial intelligence techniques in order to study NF1-specific sub-phenotypes at
two different sites will yield novel and potentially clinically-actionable and generalizable insights concerning the
precision diagnosis and care of individuals with NF1, with broader applicability across a spectrum of similarly
complex disease-states.
项目概要/摘要
神经纤维瘤病 (NF) 包含一系列复杂的遗传性疾病,几乎影响每个器官系统
并增加发生良性和恶性中枢和周围神经系统肿瘤的风险。的
在 NF 的三种类型中,1 型神经纤维瘤病 (NF1) 最常见,发生在大约 1 岁以下
每 3,000 名新生儿中就有一个不分种族、性别或民族。虽然 NF1 是在完全渗透性中遗传的
常染色体显性遗传方式,在临床特征及其方面存在广泛的个体差异
对患者发病率的影响。临床异质性是临床医生和家庭面临的普遍挑战,因为
患有 NF1 的儿童和成人的治疗在很大程度上仍然是被动的,没有可靠的生物标志物
或诊断时早期风险分层和/或预后评估的预测模型。
传统方法侧重于识别可测量的单一临床或生物标志物
并用于评估 NF1 的疾病风险或轨迹,取得的成功有限并阻碍了进展
为 NF1 患者开发精准医疗。为了应对这些挑战,并
有机会改善 NF1 患者的护理,我们的目标是验证和验证替代方案
用于开发基于人工智能 (AI) 的 NF1 临床决策支持工具的通用方法
亚表型,在两个临床中心以比较方式实施和评估。
我们提出的项目将首先使用基于文本挖掘的临床表型生成多尺度数据集
用于集成和协调来自多个来源(例如临床数据库、结构化数据)的数据的算法
电子健康记录和非结构化临床记录。其次,我们将开发基于人工智能的管道
能够生成预测模型和工具来识别三种关键 NF1 亚型的疾病风险
表型(OPG、脊柱侧凸和 ADHD)。然后我们将评估模型的定量准确性和
在 NF1 临床医生的帮助下,在护理点进行临床操作。最后,我们将验证这些方法
以及跨多个站点的模型,以便我们能够更好地理解泛化和模型化所面临的挑战
跨不同的医疗保健系统、环境和人群传输此类预测模型。
我们预计,使用人工智能技术来研究 NF1 特异性亚表型
两个不同的网站将产生新颖的、潜在的临床可行的和可推广的见解
对 NF1 患者进行精确诊断和护理,在一系列类似的疾病中具有更广泛的适用性
复杂的疾病状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditi Gupta其他文献
Aditi Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aditi Gupta', 18)}}的其他基金
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Orientation Processing Deficits in Amblyopia: Neural Bases to Functional Implications
弱视的定向处理缺陷:神经基础到功能意义
- 批准号:
10649039 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别: