Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
基本信息
- 批准号:9178315
- 负责人:
- 金额:$ 16.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArrhythmiaBackcrossingsBiological ModelsCRISPR/Cas technologyCalcineurinCalciumCalcium SignalingCardiacCardiac MyocytesCardiac MyosinsCell Culture TechniquesCell modelCellsChronicClinicalDataDevelopmentDevelopment PlansDiseaseDominant-Negative MutationElectrophysiology (science)EtiologyFunctional disorderFutureGenesGeneticGenomeGenome engineeringGenotypeGoalsHeartHeart DiseasesHeart failureHumanHypertrophic CardiomyopathyHypertrophyInduced MutationInheritedKnock-inKnock-in MouseKnock-outKnockout MiceKnowledgeLeadLinkMeasuresModelingMutationMyocardiumMyopathyOrganPathogenesisPathway interactionsPatientsPhenotypePhosphotransferasesPopulationPredispositionProductionProtein TruncationProteinsResearch PersonnelRoleSarcomeresSignal PathwaySignal TransductionStem cellsStimulusStructureSudden DeathSystemTechniquesTestingTherapeuticTissue SampleTrainingTranscriptUp-RegulationWorkcalmodulin-dependent protein kinase IIcareercareer developmentdisorder controlheart rhythmhuman diseasehuman stem cellsin vivoinduced pluripotent stem cellinhibitor/antagonistloss of functionmouse modelmultidisciplinarymutantmyosin-binding protein Cprematureskillstherapeutic developmenttranscriptome sequencing
项目摘要
ABSTRACT
Hypertrophic cardiomyopathy (HCM) is the most common Mendelian inherited cardiac disease and can be
complicated by heart failure, arrhythmias, and sudden death. Over 60% of genetically-defined HCM is due to
mutations in MYBPC3. Most MYBPC3 mutations cause premature protein truncations, but the specific
mechanisms by which these mutations lead to hypertrophy and arrhythmias is elusive. These mutations may
lead to loss of function (haploinsufficiency) but may also exert dominant negative effects from truncated
MYBPC3 protein. My previous work has demonstrated an increase in MYBPC3 at the transcript level and no
difference in protein abundance, countering the loss of function hypothesis. I have further shown in preliminary
data that truncated MYBPC3 proteins demonstrate a capacity for dominant negative effects since they are able
to incorporate in the cardiac sarcomere but mislocalize and negatively influence contractility. I hypothesize that
truncating mutations in MYBPC3 exert genotype-specific dominant negative effects that impair sarcomere
organization, predispose to arrhythmia, and activate hypertrophic signalling. The hypothesis will be explored
with three specific aims, which leverage both human induced pluripotent stem cells derived cardiomyocytes
(hiPSC-CMs) to investigate early consequences of MYBPC3 mutations, and mouse models to investigate late
consequences of MYBPC3 mutations. The first aim utilizes hiPSC lines that have been genome-engineered
using the CRISPR-Cas9 system to create lines that are genetically identical except for an allelic spectrum of
three specific MYBPC3 mutations. HiPSC-CM immaturity is addressed using modified cell culture substrates
and micropatterning techniques. These hiPSC-CMs will be compared for sarcomere organization, contractility,
calcium handling, and arrhythmia susceptibility. The second aim compares a heterozygous MYBPC3 knock-out
mouse model with a heterozygous MYBPC3 knock-in (truncating mutation) mouse model, which are direct
corollaries for the hiPSC-CM models in the first aim, and will be compared at 6 months for analogous in vivo
phenotypes that reflect chronic adverse remodeling. The third aim explores the hypothesis that the calcineurin-
CaMKII signaling pathway is critical in the pathogenesis of hypertrophy and arrhythmia susceptibility due to
truncating mutations in MYBPC3, as supported by my preliminary data for this pathway in human HCM. The
proposal will provide convincing evidence for the role of truncated MYBPC3 dominant negative effects as a
mechanistic upstream cause of sarcomere dysfunction, arrhyhthmias, and calcium mishandling in HCM.
Furthermore, the findings will have imminent clinical impact since truncating MYBPC3 mutations are the most
common genetic cause of HCM, and therefore results of this study have high potential for influencing future
genotype-specific therapeutic development. The proposed project and career development plan will also be an
excellent training vehicle to achieve my long-term career goal of becoming an independent investigator who
will lead a multidisciplinary team to better understand and treat inherited heart disease.
抽象的
肥厚型心肌病 (HCM) 是最常见的孟德尔遗传性心脏病,可通过
并发心力衰竭、心律失常、猝死。超过 60% 的遗传性 HCM 是由于
MYBPC3 突变。大多数 MYBPC3 突变会导致蛋白质过早截短,但具体的
这些突变导致肥厚和心律失常的机制尚不清楚。这些突变可能
导致功能丧失(单倍体不足),但也可能因截短而产生显着的负面影响
MYBPC3 蛋白。我之前的工作表明 MYBPC3 在转录本水平上有所增加,但没有
蛋白质丰度的差异,反驳了功能丧失的假说。我在初步中进一步表明
截短的 MYBPC3 蛋白的数据显示出显性负面影响的能力,因为它们能够
融入心脏肌节,但定位错误并对收缩力产生负面影响。我假设
MYBPC3 的截短突变会产生基因型特异性显性负面效应,损害肌节
组织,易发生心律失常,并激活肥厚的信号传导。假设将被探索
具有三个具体目标,利用人类诱导多能干细胞衍生的心肌细胞
(hiPSC-CM)研究 MYBPC3 突变的早期后果,小鼠模型研究晚期
MYBPC3 突变的后果。第一个目标是利用经过基因组工程改造的 hiPSC 系
使用 CRISPR-Cas9 系统创建除等位基因谱外其他基因均相同的品系
三个特定的 MYBPC3 突变。使用改良的细胞培养基质解决 HiPSC-CM 不成熟问题
和微图案技术。将比较这些 hiPSC-CM 的肌节组织、收缩性、
钙处理和心律失常易感性。第二个目标比较杂合 MYBPC3 敲除
具有杂合 MYBPC3 敲入(截短突变)小鼠模型的小鼠模型,该模型是直接的
第一个目标中 hiPSC-CM 模型的推论,并将在 6 个月后与体内类似模型进行比较
反映慢性不良重塑的表型。第三个目标探讨了钙调神经磷酸酶的假设
CaMKII 信号通路在肥厚和心律失常易感性的发病机制中至关重要
截断 MYBPC3 中的突变,这一点得到了我在人类 HCM 中这一通路的初步数据的支持。这
该提案将为截断的 MYBPC3 显性负面效应作为
HCM 中肌节功能障碍、心律失常和钙处理不当的上游机械原因。
此外,由于截短 MYBPC3 突变是最常见的,因此这些发现将产生迫在眉睫的临床影响。
HCM 的常见遗传原因,因此这项研究的结果具有很大的影响未来的潜力
基因型特异性治疗的开发。拟议的项目和职业发展计划也将是
优秀的培训工具,可实现我成为一名独立调查员的长期职业目标
将领导一个多学科团队更好地了解和治疗遗传性心脏病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
- 批准号:
10181155 - 财政年份:2021
- 资助金额:
$ 16.34万 - 项目类别:
Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
- 批准号:
10312792 - 财政年份:2020
- 资助金额:
$ 16.34万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9321380 - 财政年份:2016
- 资助金额:
$ 16.34万 - 项目类别:
相似国自然基金
CIRBP负向调控心肌钾离子通道表达影响恶性心律失常易感性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
右前神经节丛刺激对心肌梗死后心功能衰竭及恶性心律失常的影响及机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
系统研究神经型一氧化氮合成酶影响肌纤维钙缓冲和钙平衡促进脂肪酸诱发高血压心律失常的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体铁蛋白负向调控心肌细胞铁死亡对心肌梗死后快速室性心律失常的影响和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
胸部皮下神经刺激抑制星状神经节活性对急性心肌梗死后心律失常及心脏电生理特性的影响
- 批准号:82000308
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 16.34万 - 项目类别:
Novel patient biomarkers and mechanisms of TKI associated Cardiotoxicity
TKI 相关心脏毒性的新型患者生物标志物和机制
- 批准号:
10728954 - 财政年份:2023
- 资助金额:
$ 16.34万 - 项目类别:
Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
- 批准号:
10752585 - 财政年份:2023
- 资助金额:
$ 16.34万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 16.34万 - 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 16.34万 - 项目类别: