DNA Repair, Cell Cycle Checkpoints and Apoptosis as Targets for Anticancer Drugs
DNA 修复、细胞周期检查点和细胞凋亡作为抗癌药物的靶标
基本信息
- 批准号:9343539
- 负责人:
- 金额:$ 127.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AcyclovirAdvanced Malignant NeoplasmAntineoplastic AgentsAntineoplastic Combined Chemotherapy ProtocolsApoptosisBiochemicalBiological AssayBiologyCCRCamptothecinCancer cell lineCell Cycle CheckpointCell DeathCell LineCellsChromatinClinicClinicalClinical TrialsComplexCoupledCrystallographyCytarabineDNADNA DamageDNA RepairDNA Synthesis InhibitorsDatabasesDevelopmentDrug CombinationsEnzymesFDA approvedGenomicsInstitutesKnock-outMedicineMiningMolecularMolecular Mechanisms of ActionMolecular ModelsMutationNuclearPathway interactionsPatient SelectionPatientsPharmaceutical PreparationsPharmacologyPhosphodiesterase InhibitorsPlant RootsPlatinumPoly(ADP-ribose) PolymerasesPre-Clinical ModelProtein Kinase InhibitorsRecombinantsRecruitment ActivityRegulationReportingResistanceSiteSite-Directed MutagenesisStagingTOP1 geneTOP2A geneTestingTherapeutic IndexTissuesTopoisomeraseTopoisomerase InhibitorsTubulinVirus ReplicationZidovudineadductbasecancer therapychemotherapeutic agentclinically relevantdrug candidategenomic datahomologous recombinationimprovedinhibitor/antagonistlung small cell carcinomamitochondrial genomemolecular modelingnovelprecision medicinepredictive markerprotein kinase inhibitorrepairedresponsetargeted agenttargeted deliverytemozolomidetherapeutic targettumortyrosyl-DNA phosphodiesterase
项目摘要
We are performing three complementary projects to elucidate the molecular pharmacology of clinically relevant inhibitors of topoisomerases and poly(ADPribose) polymerase (PARP) inhibitors. Project #1. Repair of topoisomerase cleavage complexes by tyrosyl-DNA-phosphodiesterases (TDPs) Aim 1: Biology of TDPs: TDP1 and TDP2 preferentially repair TOP1cc and TOP2cc, respectively. In addition to TOP1cc, TDP1 removes damaged and non-canonical bases and adducts from 3'-DNA ends. This explains why lack of TDP1 sensitizes cells not only to TOP1 inhibitors but also to temozolomide, cytarabine, zidovudine (AZT) and acyclovir. We are studying how TDP1 is regulated and recruited to DNA damaged sites. We recently reported that TDP1 is coupled with PARP1 and that inhibiting PARP1 results in TDP1 inactivation. Because TDP1 excises TOP1cc both in the nuclear and mitochondrial genomes, we are currently examining whether TDP2 also removes TOP2cc in the mitochondrial genome. We are also using knockout cell lines, site-directed mutagenesis and crystallography to elucidate the biology of TDPs. Aim 2: Pharmacology and targeting of TDPs: The rationale for targeting TDPs is rooted in the emerging importance of TDPs for DNA repair and viral replication, and the potential of TDP inhibitors for anticancer drug combinations. To do so, we are using biochemical assays with recombinant TDP enzymes. We are also taking advantage of TDP1 and TDP2 knockout cell lines, crystallographic determinations and molecular modeling to study the molecular pharmacology of the drug candidates. Project #2. PARP trapping by PARP inhibitors: molecular mechanisms and translational implications PARP inhibitors represent the most advanced cancer therapeutics targeting the DNA damage response, with one inhibitor, olaparib already an approved medicine and several others in late stage development. PARP inhibitors are the first drugs to exploit the concept of synthetic lethality for homologous recombination deficiency (HRD) in the clinic. Understanding the mechanism(s) of action of PARP inhibitors is key to the successful deployment of these agents. Our studies focus on 'PARP trapping' as an integral component of the pharmacology of these inhibitors. Aim 1: PARP pharmacology: Our studies focus on the differences in the molecular mechanisms of action between PARP inhibitors with respect to PARP trapping and what this means for both monotherapy activity and combination with chemotherapeutic agents. We are investigating in preclinical models the two most synergistic combinations: with temozolomide and with TOP1 inhibitors, including our non-camptothecin indenoisoquinoline TOP1 inhibitors (see above). Project #3. Genomic determinants of drug response and preclinical models for predictive biomarkers for patient selection and rational drug combinations with TOP1 and PARP inhibitors The insufficiencies of simple relationships between the activity of widely used DNA- and chromatin-targeted agents and their primary targets warrant the need to identify novel DNA damage response (DDR) determinants for predicting drug responses and rationalizing drug combinations. Aim 1: Use cancer cell line databases to mine drug responses based on CellMiner: Taking advantage of the extensive NCI-60 drug database ( 40,000 drugs including FDA approved and investigational clinical drugs), whole genomic data and our CellMiner facility, we discovered several novel predictive biomarkers for DNA-targeted agents: SLX4 (FANCP) mutations, ATAD5 (ELG1) mutations, and SLFN11 (Schlafen 11) expression. We are extending these analyses to tissue-specific cancer cell line databases (NCI Small Cell Lung Cancers), and larger databases (CCLE: MIT-Broad Institute and CGP: MGH-Sanger), and to CCR clinical trials to test predictive biomarker signatures. Aim 2: SLFN11 as predictive biomarkers for response to DNA damaging drugs was discovered through NCI-60 analyses and in parallel by the CCLE teams. SLFN11 determines response to TOP1, TOP2, PARP inhibitors, DNA synthesis inhibitors and platinum derivatives but not to tubulin or protein kinase inhibitors or apoptosis-inducing drugs. SLFN11 is inactivated in approximately 50% of cancer cells lines, making them resistant to DNA damaging agents. Our aims are to elucidate the molecular mechanism of SLFN11 action and regulation, and relevance for patient responses and rationale drug combinations.
我们正在进行三个补充项目,以阐明拓扑异构酶和聚(Adpribose)聚合酶(PARP)抑制剂的临床相关抑制剂的分子药理学。项目#1。修复酪酶-DNA-磷酸二酯酶(TDPS)AIM 1:TDPS的生物学:TDP1和TDP2优先修复TOP1CC和TOP2CC的生物学,对拓扑异构酶裂解复合物进行修复。除TOP1CC外,TDP1还取出了3'-DNA末端的损坏和非典型的碱基和加合物。这解释了为什么缺乏TDP1不仅会使细胞不仅对TOP1抑制剂,而且还对替莫唑胺,Cytarabine,Zidovudine(AZT)和Acyclovir敏感。我们正在研究如何调节TDP1并招募到DNA损坏的位点。我们最近报道了TDP1与PARP1结合,并且抑制PARP1导致TDP1失活。由于TDP1在核和线粒体基因组中均造成了TOP1CC,因此我们目前正在研究TDP2是否还消除了线粒体基因组中的TOP2CC。我们还使用基因敲除细胞系,定位的诱变和晶体学来阐明TDP的生物学。 AIM 2:TDP的药理学和靶向靶向:靶向TDP的基本原理植根于TDPS对DNA修复和病毒复制的新兴重要性,以及TDP抑制剂对于抗癌药物组合的潜力。为此,我们使用重组TDP酶的生化测定法。我们还利用TDP1和TDP2基因敲除细胞系,晶体学测定和分子建模来研究候选药物的分子药理学。项目#2。 PARP抑制剂的PARP捕获:分子机制和翻译意义PARP抑制剂代表了针对DNA损伤反应的最先进的癌症治疗剂,其中一种抑制剂,Olaparib已经获得了批准的药物,而在后期发育中已经有几种抑制剂。 PARP抑制剂是第一个利用诊所中同源重组缺乏(HRD)的合成致死性概念的药物。了解PARP抑制剂作用的机制是成功部署这些药物的关键。我们的研究集中于“ PARP捕获”,这是这些抑制剂药理学的组成部分。 AIM 1:PARP药理学:我们的研究集中于PARP抑制剂在PARP捕获方面的分子作用机理的差异,以及这对单一疗法活性和与化学治疗剂的结合意味着什么。我们正在临床前模型中研究两种最协同的组合:与替莫唑胺和TOP1抑制剂,包括我们的非羊皮蛋白indenoisoquinoline top1抑制剂(请参见上文)。项目#3。药物反应和临床前模型的基因组决定因素,用于预测生物标志物,用于患者选择和使用TOP1和PARP抑制剂合理的药物组合抑制剂,而广泛使用的DNA和染色质型和染色质的活性之间的简单关系不足,其主要目标及其主要靶标及其主要靶标需要识别新型DNA损伤响应(DDR)的药物(DDR)的药物响应,并确定药物的确定性化作用。 Aim 1: Use cancer cell line databases to mine drug responses based on CellMiner: Taking advantage of the extensive NCI-60 drug database ( 40,000 drugs including FDA approved and investigational clinical drugs), whole genomic data and our CellMiner facility, we discovered several novel predictive biomarkers for DNA-targeted agents: SLX4 (FANCP) mutations, ATAD5 (ELG1) mutations, and SLFN11 (Schlafen 11)表达。我们将这些分析扩展到组织特异性的癌细胞系数据库(NCI小细胞肺癌),以及较大的数据库(CCLE:MIT-BROAD研究所和CGP:MGH-SANGER),以及CCR临床试验以测试预测性生物标志物。 AIM 2:通过NCI-60分析和CCLE团队并行发现了SLFN11作为对DNA损害药物反应的预测生物标志物。 SLFN11确定对TOP1,TOP2,PARP抑制剂,DNA合成抑制剂和铂衍生物的反应,但不对微管蛋白或蛋白激酶抑制剂或凋亡诱导药物的反应。在大约50%的癌细胞系中,SLFN11灭活,使其对DNA损伤剂有抵抗力。我们的目的是阐明SLFN11作用和调节的分子机制,以及与患者反应和原理药物组合的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YVES POMMIER其他文献
YVES POMMIER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YVES POMMIER', 18)}}的其他基金
PHARMACOLOGY OF HIV VIRAL DNA & RETROVIRAL INTEGRASES
HIV 病毒 DNA 的药理学
- 批准号:
6289186 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
Pharmacology of HIV Viral DNA & Retroviral Integrases
HIV病毒DNA的药理学
- 批准号:
6558988 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
Pharmacology of HIV Viral DNA & Retroviral Integrases
HIV病毒DNA的药理学
- 批准号:
6433080 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
Pharmacology of HIV Viral DNA & Retroviral Integrases
HIV病毒DNA的药理学
- 批准号:
6950193 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
Pharmacology of HIV Viral DNA Retroviral Integrases
HIV 病毒 DNA 逆转录病毒整合酶的药理学
- 批准号:
8552596 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Topoisomerases as nuclear and mitochondrial targets of Anticancer Drugs
DNA 拓扑异构酶作为抗癌药物的核和线粒体靶标
- 批准号:
8937651 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
Pharmacology of HIV Viral DNA Retroviral Integrases
HIV 病毒 DNA 逆转录病毒整合酶的药理学
- 批准号:
9153492 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Topoisomerases as Target of Action of Anticancer Dru
DNA拓扑异构酶作为抗癌药物的作用靶点
- 批准号:
7337933 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Topoisomerases as nuclear and mitochondrial targets of Anticancer Drugs
DNA 拓扑异构酶作为抗癌药物的核和线粒体靶标
- 批准号:
10702291 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
Pharmacology of HIV Viral DNA & Retroviral Integrases
HIV病毒DNA的药理学
- 批准号:
6761682 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
相似海外基金
DNA Repair, Cell Cycle Checkpoints and Apoptosis as Targets for Anticancer Drugs
DNA 修复、细胞周期检查点和细胞凋亡作为抗癌药物的靶点
- 批准号:
10925958 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Repair, Cell Cycle Checkpoints and Apoptosis as Targets for Anticancer Drugs
DNA 修复、细胞周期检查点和细胞凋亡作为抗癌药物的靶点
- 批准号:
10262019 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Repair, Cell Cycle Checkpoints and Apoptosis as Targets for Anticancer Drugs
DNA 修复、细胞周期检查点和细胞凋亡作为抗癌药物的靶标
- 批准号:
9556209 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Repair, Cell Cycle Checkpoints and Apoptosis as Targets for Anticancer Drugs
DNA 修复、细胞周期检查点和细胞凋亡作为抗癌药物的靶标
- 批准号:
10702290 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别:
DNA Repair, Cell Cycle Checkpoints and Apoptosis as Targets for Anticancer Drugs
DNA 修复、细胞周期检查点和细胞凋亡作为抗癌药物的靶点
- 批准号:
10014287 - 财政年份:
- 资助金额:
$ 127.25万 - 项目类别: