AI-based Fall-Risk Assessment during Daily Activities in Post Stroke Survivors using Smartphones
使用智能手机对中风后幸存者进行日常活动期间基于人工智能的跌倒风险评估
基本信息
- 批准号:10580558
- 负责人:
- 金额:$ 39.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Activities of Daily LivingAssessment toolCaringCellular PhoneCharacteristicsClassificationClinicClinicalDataDecision Support SystemsDiagnosisDigital biomarkerEarly InterventionEarly identificationEngineeringEnvironmentFoundationsFutureGaitGoalsHealthHealth SciencesHispanicHomeHourIndividualInjuryInterventionLaboratoriesLiving WillsMachine LearningMeasurementMissionModalityModelingMonitorMorbidity - disease rateMovementObesityParticipantPatient RecruitmentsPatientsPerformancePopulationQuality of lifeROC CurveRehabilitation therapyReportingResearchRiskRisk AssessmentSTEM researchSensitivity and SpecificityStrokeStudentsTrainingUnderrepresented StudentsUnited States National Institutes of HealthUniversitiesWalkingWomanartificial intelligence algorithmcostdeep neural networkdesignethnic minorityexperiencefall riskfallsfollow-upgraduate studenthealth applicationhigh riskimprovedmachine learning algorithmmachine learning modelmortalitypersonalized careportabilitypost strokeprogramssensorstroke rehabilitationstroke survivortoolundergraduate studentwearable sensor technology
项目摘要
Project Summary
Falls in post-stroke survivors are up to 73% in the first year after stroke, and at least 70% of ambulatory stroke
survivors experience an annual fall. The detrimental effects of falls include serious injuries, increased morbidity
and mortality, dwindling functional mobility and quality of life, and high health-related costs. Most fall risk
assessments for ambulatory post-stroke survivors are based on an ordinal scale of functional measurements,
lack objectivity and accuracy, and are limited to clinical or laboratory environments. Early identification of post-
stroke survivors at risk of falling is crucial for developing timely tailored interventions to reduce falls.
This project aims to develop a machine learning (ML) based fall risk assessment tool for ambulatory
stroke survivors by using inertial sensor data from smartphone worn at the waist during activities of daily living.
This endeavor will involve graduate and undergraduate (UG) students at each stage of the project and expose
them to multiple facets of rigorous scientific research. Chapman University is at the forefront of stroke
rehabilitation and organizes Stroke Boot Camp (SBC), a free rehabilitation program every semester. In
addition, CSU Long Beach’s pro bono clinic will provide us with easy access to the nearby stroke population.
The overall goal of this project is to develop a portable decision support system for clinicians to diagnose fall
risk even when the patient is away from the clinic. This study aims 1) To establish if digital biomarkers
extracted from the smartphone data while performing prescribed ADLs significantly differ between high and
low-risk fallers in laboratory settings. The remaining data needed to build the ML model is collected entirely in
the participant’s home setting. The participants will wear the smartphone on their waist during all waking hours
and perform regular activities of daily living. 2) To train three ML models that can classify fall-risk using different
data modalities: using i) passively collected 3-day ADL data, ii) data from prescribed simple ADL tasks like
turning, walking, and sit-to-stand, iii) combined subjective and objective data. 3) To assess the predictive
validity of the ML models against actual fall occurrences after six months.
The successful implementation of the project will enhance stroke care by an accurate fall risk
assessment for ambulatory stroke survivors. Identifying post-stroke individuals at high risk of falling will allow
early intervention to improve care and quality of life in these individuals. In addition, this study has the potential
for developing a product that could track progress during stroke rehabilitation.
项目概要
中风后幸存者中,中风后第一年跌倒的比例高达 73%,其中至少 70% 是流动中风
幸存者每年都会经历一次跌倒,跌倒的不利影响包括严重受伤、发病率增加。
和死亡率、功能活动能力和生活质量下降以及与健康相关的高昂费用。
对中风后幸存者的动态评估是基于功能测量的顺序量表,
缺乏客观性和准确性,并且仅限于临床或实验室环境的早期识别。
有跌倒风险的中风幸存者对于及时制定针对性的干预措施以减少跌倒至关重要。
该项目旨在开发一种基于机器学习(ML)的动态跌倒风险评估工具
通过使用日常生活活动中佩戴在腰部的智能手机的惯性传感器数据来帮助中风幸存者。
这项工作将让研究生和本科生 (UG) 参与项目的每个阶段,并揭示
查普曼大学在多个方面都处于中风研究的前沿。
康复并组织中风训练营(SBC),这是每学期的免费康复计划。
此外,科罗拉多州立大学长滩分校的无偿诊所将使我们能够轻松接触附近的中风人群。
该项目的总体目标是开发一个便携式决策支持系统,供封建领主诊断跌倒
即使患者离开诊所也存在风险。本研究的目的是 1) 确定数字生物标志物是否存在。
在执行规定的 ADL 时从智能手机数据中提取的数据在高和低之间存在显着差异
建立机器学习模型所需的剩余数据完全在实验室环境中收集。
参与者将在醒着的时候将智能手机佩戴在腰间
并进行日常生活的常规活动 2) 训练三个可以使用不同方式对跌倒风险进行分类的 ML 模型。
数据模式:使用 i) 被动收集 3 天的 ADL 数据,ii) 来自规定的简单 ADL 任务的数据,例如
转身、行走和坐立,iii) 结合主观和客观数据 3) 评估预测。
六个月后机器学习模型相对于实际跌倒发生情况的有效性。
该项目的成功实施将通过准确的跌倒风险来加强中风护理
对流动中风幸存者进行评估将有助于识别高跌倒风险的中风后个体。
此外,这项研究还有潜力改善这些人的护理和生活质量。
获奖理由:开发一款可以跟踪中风康复过程中进展情况的产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Soangra其他文献
Rahul Soangra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
有限理性视阈下农村地区辅食期婴幼儿喂养行为的评估工具、作用机制及管理策略研究
- 批准号:72274130
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
整合视角下基于价值的公共卫生项目评估工具、空间配置及优化研究
- 批准号:
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:
基于Meta流行病学和大数据监督学习构建针刺试验偏倚风险评估工具和人工智能辅助评估模型研究
- 批准号:81873197
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于跨区域视角的城市食物-能源-水关联系统的核算及评估工具包开发
- 批准号:71804023
- 批准年份:2018
- 资助金额:19.5 万元
- 项目类别:青年科学基金项目
新型DNA双链断裂测序方法及其在基因编辑工具酶评估中的应用
- 批准号:31771485
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
UAS-CLEAR: A new nationally representative longitudinal study of caregiving experiences and well-being across the lifecourse
UAS-CLEAR:一项新的全国代表性纵向研究,涉及整个生命过程中的护理体验和福祉
- 批准号:
10729032 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Developing an oral health screening tool for an integrated model of care to reduce treatment-related oral morbidity in head and neck cancer survivor
开发口腔健康筛查工具,用于综合护理模式,以减少头颈癌幸存者与治疗相关的口腔发病率
- 批准号:
10781183 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Midcareer award in aging-related subspecialty research
与衰老相关的专业研究中的职业生涯中期奖
- 批准号:
10570687 - 财政年份:2023
- 资助金额:
$ 39.13万 - 项目类别:
Metabolic Immunomodulation of Wound-Associated Macrophage Functional Plasticity as a Novel Diagnostic Target in Diabetic Veterans
伤口相关巨噬细胞功能可塑性的代谢免疫调节作为糖尿病退伍军人的新诊断目标
- 批准号:
10370267 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Addressing Alzheimer's Disease and Related Dementias Disparities: The American Indigenous Cognitive Assessment (AMICA) Project
解决阿尔茨海默病和相关痴呆症的差异:美国土著认知评估 (AMICA) 项目
- 批准号:
10623223 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别: