Mechanisms in Primary Nociceptors that Drive Ongoing Activity and Ongoing Pain
驱动持续活动和持续疼痛的初级伤害感受器的机制
基本信息
- 批准号:10611897
- 负责人:
- 金额:$ 42.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAcute PainAfferent NeuronsAnalgesicsAnesthesia proceduresAttentionAutomobile DrivingC FiberCapsaicinCellsChemosensitizationChronicClinicalCyclic AMPDependenceDistressDoseDrug usageElectrophysiology (science)FiberForskolinFoundationsFrequenciesFreund&aposs AdjuvantGenerationsHyperalgesiaInflammationInflammatoryInjectionsInterventionInvestigationIon ChannelIonsKnowledgeLinkMediatorMedicalMembrane PotentialsModelingMusNatureNeuronsNeuropathyNociceptionNociceptorsOpioidPainPathway interactionsPeripheralPersistent painPharmaceutical PreparationsPotassium ChannelProbabilityProceduresPropertyRattusReportingResistanceRestRiskRoleSerotoninSignal TransductionSpinal GangliaSpinal cord injuryStructure of trigeminal ganglionTRPV1 geneTestingTransgenic MiceTransgenic OrganismsTranslatingallodyniabehavior testchronic paindefined contributioneconomic costeffective therapyin vitro activityin vivoin vivo evaluationinhibitornovelpharmacologicpre-clinicalpreventside effectsocialspinal nerve posterior rootvirtualvoltage
项目摘要
Project Summary
The long-term objective of this project is to discover novel, highly targeted approaches for treating ongoing
pain by defining critical mechanisms of ongoing activity (OA) in primary nociceptors that drive this pain. Recent
discoveries revealed that the OA generated spontaneously in probable nociceptors and linked to ongoing pain
after spinal cord injury (SCI) is associated with all three electrophysiological alterations that, in principle, can
promote OA. These are depolarization of resting membrane potential (RMP), reduced voltage threshold for
action potentials (APs), and increased frequency of large, transient, depolarizing spontaneous fluctuations
(DSFs). Two extrinsic mediators related to inflammation, serotonin (5-HT) and capsaicin (mimicking
endogenous TRPV1 activators), also promote OA, in large part by enhancing DSFs. Virtually nothing is known
about mechanisms underlying large DSFs. Three specific aims will test hypotheses about DSF generation and
potentiation, employing whole cell patch recording, stimulation by Ca2+ uncaging, pharmacological and
transgenic approaches, in vivo recording, and behavioral tests. Aim 1 will define ion conductance and cell
signaling (Ca2+ and cAMP) contributions to the acute generation of large DSFs, taking advantage of the ability
of 5-HT, forskolin, and capsaicin to rapidly stimulate large DSFs, using naïve rats and transgenic mice. The
focus will include HCN channels, T-type Ca2+ channels, and Nav1.8 channels. Special attention will be paid to
TRPC4/5 channels, which are important for OA and have unusual properties that account for unique features
of large DSFs. Aim 2 will define ion conductances and cell signals that promote large DSF generation in
chronic SCI and in a subacute peripheral inflammation model (hindpaw injection of complete Freund's adjuvant
- CFA). The channels found in Aim 1 to be important for large DSFs will be tested for altered contributions and
expression in each model. Alterations promoting OA are predicted to be shared in these models (and thus to
potentially drive many forms of ongoing pain). Aim 3 will test the prediction that combined interventions
selectively blocking large DSFs and elevating AP threshold will reduce ongoing pain. A novel analgesic
strategy will be tested, which combines a drug that prevents large DSF generation (a TRPC4/5 blocker) with a
drug that selectively elevates AP threshold in nociceptors (a Nav1.8 blocker). The combination should
efficiently suppress nociceptor OA and consequent ongoing pain at doses lower than required to observe any
effect on ongoing pain from either drug alone. This prediction will be tested in vivo both on C-fiber OA recorded
from dorsal roots of anesthetized rats and on ongoing pain in SCI rats and in rat and mouse CFA models. This
targeted approach could lay the foundation for new treatments for severe ongoing pain that have relatively few
side effects and provide an alternative to opioids, with their attendant risks.
项目概要
该项目的长期目标是发现新颖的、高度针对性的方法来治疗持续的
通过定义导致这种疼痛的主要伤害感受器持续活动(OA)的关键机制来减轻疼痛。
研究发现,OA 在可能的伤害感受器中自发产生,并与持续的疼痛有关
脊髓损伤(SCI)后与所有三种电生理改变相关,原则上,
这些是静息膜电位 (RMP) 的去极化、降低的电压阈值。
动作电位 (AP) 以及大的、瞬时的、去极化自发波动的频率增加
(DSF)与炎症相关的两种外在介质,血清素(5-HT)和辣椒素(模仿)。
内源性 TRPV1 激活剂)也能促进 OA,很大程度上是通过增强 DSF 来实现的,但实际上对此一无所知。
关于大型 DSF 背后的机制的三个具体目标将测试有关 DSF 生成和的假设。
增强作用,采用全细胞贴片记录,Ca2+解笼锁刺激,药理学和
转基因方法、体内记录和行为测试将定义离子电导和细胞。
信号传导(Ca2+ 和 cAMP)对大 DSF 的急性产生有贡献,利用这种能力
使用幼稚大鼠和转基因小鼠,使用 5-HT、毛喉素和辣椒素快速刺激大 DSF。
重点包括HCN通道、T型Ca2+通道和Nav1.8通道。
TRPC4/5 通道,对于 OA 很重要,并且具有不寻常的属性,可以实现独特的功能
目标 2 将定义促进大 DSF 生成的离子电导和细胞信号。
慢性 SCI 和亚急性周围炎症模型(后爪注射完全弗氏佐剂
- CFA)。目标 1 中发现的对大型 DSF 很重要的渠道将进行更改贡献和测试。
预测促进 OA 的改变在这些模型中是共享的(因此
目标 3 将测试结合干预措施的预测
选择性阻断大 DSF 并提高 AP 阈值将减轻持续疼痛。
将测试策略,该策略将防止大量 DSF 生成的药物(TRPC4/5 阻滞剂)与
选择性提高伤害感受器 AP 阈值的药物(Nav1.8 阻滞剂)。
有效抑制伤害感受器 OA 和随之而来的持续疼痛,剂量低于观察任何情况所需的剂量
单独使用任一药物对持续疼痛的影响将在记录的 C 纤维 OA 上进行体内测试。
来自麻醉大鼠的背根以及 SCI 大鼠以及大鼠和小鼠 CFA 模型的持续疼痛。
有针对性的方法可以为治疗严重持续性疼痛的新疗法奠定基础,而这种疗法相对较少
副作用并提供阿片类药物的替代品,及其伴随的风险。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Readiness of nociceptor cell bodies to generate spontaneous activity results from background activity of diverse ion channels and high input resistance.
伤害感受器细胞体准备产生自发活动是由于不同离子通道的背景活动和高输入电阻造成的。
- DOI:
- 发表时间:2024-04-01
- 期刊:
- 影响因子:7.4
- 作者:Tian, Jinbin;Bavencoffe, Alexis G;Zhu, Michael X;Walters, Edgar T
- 通讯作者:Walters, Edgar T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDGAR T. WALTERS其他文献
EDGAR T. WALTERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDGAR T. WALTERS', 18)}}的其他基金
Mechanisms in primary nociceptors that drive ongoing activity and ongoing pain
初级伤害感受器驱动持续活动和持续疼痛的机制
- 批准号:
10381714 - 财政年份:2019
- 资助金额:
$ 42.3万 - 项目类别:
Mechanisms in primary nociceptors that drive ongoing activity and ongoing pain
初级伤害感受器驱动持续活动和持续疼痛的机制
- 批准号:
9908192 - 财政年份:2019
- 资助金额:
$ 42.3万 - 项目类别:
Sensory Plasticity During Central Neuropathic Pain Caused by Spinal Cord Injury
脊髓损伤引起的中枢神经病理性疼痛的感觉可塑性
- 批准号:
7765622 - 财政年份:2009
- 资助金额:
$ 42.3万 - 项目类别:
PRIMITIVE FOUNDATIONS OF NEUROPATHIC HYPERALGESIA
神经性痛觉过敏的原始基础
- 批准号:
2396575 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
PRIMITIVE FOUNDATIONS OF NEUROPATHIC HYPERALGESIA
神经性痛觉过敏的原始基础
- 批准号:
2703127 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
Nociceptive Memory: Mechanisms of Hyperexcitability
伤害性记忆:过度兴奋的机制
- 批准号:
7017819 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
Nociceptive Memory: Mechanisms of Hyperexcitability
伤害性记忆:过度兴奋的机制
- 批准号:
7231967 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
Nociceptive Memory: Mechanisms of Hyperexcitability
伤害性记忆:过度兴奋的机制
- 批准号:
7417933 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
NOCICEPTIVE MEMORY: MECHANISMS OF HYPEREXCITABILITY
伤害性记忆:过度兴奋的机制
- 批准号:
6393858 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
Nociceptive Memory: Mechanisms of Hyperexcitability
伤害性记忆:过度兴奋的机制
- 批准号:
6922654 - 财政年份:1997
- 资助金额:
$ 42.3万 - 项目类别:
相似国自然基金
电针调控Nrf2表达抑制巨噬细胞铁死亡进程缓解急性痛风性关节炎疼痛的机制研究
- 批准号:82305369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
急性牙髓炎疼痛昼夜变化的中枢调控新机制:节律基因Per1/HIF-1α轴调控铁代谢介导小胶质细胞差异性极化
- 批准号:82370986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
围术期睡眠剥夺激活外周感觉神经元芳香烃受体致术后急性疼痛慢性化
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从急性到慢性下腰腿痛:默认网络对疼痛的编码作用及其机制的MRI研究
- 批准号:82160331
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
Investigating the Role of Heme in Acute and Chronic Sickle Cell Disease Pain
研究血红素在急性和慢性镰状细胞病疼痛中的作用
- 批准号:
10750175 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
Targeting visceral pain through intestinal neuropod cell GUCY2C signaling
通过肠道神经足细胞 GUCY2C 信号传导治疗内脏疼痛
- 批准号:
10837293 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别: