Representation of Visual Features in Mental Images of Complex Scenes.
复杂场景心理图像中视觉特征的表示。
基本信息
- 批准号:9033118
- 负责人:
- 金额:$ 37.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAttentionAwarenessBrainBrain imagingCategoriesComplexDataDevelopmentDiagnosisEnvironmentExhibitsFeedbackFoundationsFrequenciesFunctional Magnetic Resonance ImagingGoalsHealthImageImageryKnowledgeLinkLocationMapsMeasuresMental HealthModelingOutcomePerceptionPlayProcessPsyche structurePublic HealthResearchRetinaRetinalRoleSignal TransductionSourceSpatial DistributionSystemTestingVisionVisualVisual CortexWorkbasecognitive processdesignextrastriate visual cortexinnovationmental imageryneuromechanismnovel strategiesphysical processpredictive modelingreceptive fieldrelating to nervous systemretinotopic
项目摘要
DESCRIPTION (provided by applicant): Mental imagery is a salient part of mental awareness but very little is understood about how visual percepts are generated without retinal input, or how visual features that are known to be an important part of visual representation drive neural activity during mental imagery. Our long-term goal is to provide clinicians with the ability to objectively interpret mental images by accessing underlying neural activity. The objective of the current work is to develop a basic understanding of the similarities and differences between the representation of visual features in veridical and mental images. Our central hypothesis is that the mechanisms for representing visual features during perception are fundamentally conserved during mental imagery and that receptive fields that link activity to veridical images should predict activity evoked by mental imagery. Nonetheless, mental images are clearly distinguishable from veridical images and we consider three potential sources of difference: (1) The potential for exaggerated effects of attention on mental imagery; (2) The predominate influence of feedback connections from high-level visual areas with large receptive fields (relative to the retina) during mental imagery; (3) Differences between the neural processes of generating mental images and the physical processes that generate retinal images. Two Specific Aims are proposed that will be pursued using an innovative new approach for analyzing functional MRI signals that is based upon voxel-wise modeling of receptive fields. Under this approach, a separate predictive model is constructed for each and every voxel in the acquired volumes. The model links activity measured in a voxel directly to specific visual features, including spatial frequency, orientation, object category, and object location. The models can then be used to decode perceived or recalled scenes from measured brain activity. We expect that our contribution will be an advance in our understanding of the specific factors that determine the degree of consistency between activity during imagery and perception, as well as a significant advance in our ability to quantitatively model the high-level visual areas where activity is most consistent. This contribution will be significant because it will take us several necessary steps toward the development of imagery receptive fields-predictive receptive field models that explain how the visual features in a scene drive activity when the scene is recalled in the form of a mental image. A receptive field model for mental imagery would place within reach a decoding algorithm for objectively interpreting and even pictorially reconstructing mental images.
描述(由申请人提供):心理图像是心理意识的重要组成部分,但是关于没有视网膜输入的视觉感知是如何产生视觉感知的,或者是如何在视觉表现中驱动心理图像中神经活动的重要组成部分的知识。我们的长期目标是为临床医生提供通过访问潜在的神经活动来客观地解释心理图像的能力。当前工作的目的是对视觉特征和心理图像中视觉特征表示的相似性和差异进行基本理解。我们的中心假设是,在心理图像中,在感知过程中表示视觉特征的机制是从根本上保守的,并且将活动与垂直图像联系起来的接受领域应预测精神成像引起的活动。尽管如此,心理图像与垂直图像显然可以区分,我们考虑了三种潜在的差异来源:(1)夸大关注对心理图像的影响的潜力; (2)在心理影像过程中,来自高级视觉区域(相对于视网膜)的高级视觉区域的反馈连接的主要影响; (3)产生心理图像的神经过程与产生视网膜图像的物理过程之间的差异。提出了两个具体的目标,该目标将使用创新的新方法来分析基于接收场的素建模的功能性MRI信号。在这种方法下,为获得的体积中的每个体素构建了一个单独的预测模型。该模型将Voxel中测量的活动链接到特定的视觉特征,包括空间频率,方向,对象类别和对象位置。然后,这些模型可用于解码所测量的大脑活动中感知或回忆的场景。我们预计,我们的贡献将是我们对确定图像和感知过程中活动之间一致性程度的特定因素的理解的进步,以及我们定量对活动最一致的高级视觉领域进行定量模拟的能力的重大进步。这项贡献将是重要的,因为它将花费我们几个必要的步骤,以开发图像接受场预测性的接收场模型,这些模型解释了场景中的视觉特征在以心理图像的形式召回场景时如何驱动场景。用于心理图像的接受现场模型将置于一种解码算法,用于客观地解释甚至在图像上重建心理图像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS P NASELARIS其他文献
THOMAS P NASELARIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS P NASELARIS', 18)}}的其他基金
Representation of Visual Features in Mental Images of Complex Scenes.
复杂场景心理图像中视觉特征的表示。
- 批准号:
8698031 - 财政年份:2014
- 资助金额:
$ 37.38万 - 项目类别:
Population analysis of shape representation in V4
V4 中形状表示的总体分析
- 批准号:
7232722 - 财政年份:2006
- 资助金额:
$ 37.38万 - 项目类别:
Population analysis of shape representation in V4
V4 中形状表示的总体分析
- 批准号:
7111214 - 财政年份:2006
- 资助金额:
$ 37.38万 - 项目类别:
Population analysis of shape representation in V4
V4 中形状表示的总体分析
- 批准号:
7483599 - 财政年份:2006
- 资助金额:
$ 37.38万 - 项目类别:
相似国自然基金
人机共驾模式下驾驶人监管注意力弱化-恢复规律与调控机理
- 批准号:52302425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
逆全球化下跨国企业动态能力形成的微观机理研究:高管注意力配置视角
- 批准号:72302220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
注意力感知驱动的车载多模态传感器在线协同校正
- 批准号:42301468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于两阶段注意力深度学习方法的系统性金融风险测度与预警研究
- 批准号:72301101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
- 批准号:
10817272 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Does Tobacco Social Media Marketing Alter Adolescent Risk Perceptions and Use? Longitudinal Data-Adaptive Estimators and Causal Inference to Enhance Understanding
烟草社交媒体营销是否会改变青少年的风险认知和使用?
- 批准号:
10804979 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Identification of somatic/ mosaic SV and transposon activity and their crosstalk to DNA epigenetic Modifications
体细胞/嵌合 SV 和转座子活性的鉴定及其与 DNA 表观遗传修饰的串扰
- 批准号:
10662143 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别: