Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
基本信息
- 批准号:8795714
- 负责人:
- 金额:$ 36.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-18 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAirAir PollutantsAir PollutionAllyBayesian MethodBayesian ModelingChemicalsCitiesCommunitiesComplexComputer softwareDataDatabasesDetectionEnvironmental ExposureEnvironmental HealthEpidemiologic StudiesEpidemiologyEquationFactor AnalysisFoundationsHealthHealth StatusIndividualInterventionLinkLocationMarkov chain Monte Carlo methodologyMeasurementMeasuresMedicareMethodologyMethodsModelingMonitorMorbidity - disease rateNatureOutcomeParticulate MatterPollutionPopulationPublic HealthQuality ControlRelative (related person)Research PersonnelResolutionRiskSourceStatistical MethodsStatistical ModelsToxic effectVariantWorkambient air pollutionambient particlebasecohortdesignhealth datainnovationmodel developmentmortalitynovelopen sourceplanetary Atmospherepollutantpopulation healthpreventpublic health interventionreceptor
项目摘要
DESCRIPTION (provided by applicant): Statistical Methods for Complex Environmental Health Data Project Summary Ambient particulate matter (PM) air pollution is a major threat to public health, but current approaches to setting air quality standards do not reflect the complex multi-pollutant nature of the PM chemical mixture. Recent work indicates that opportunities may exist to reduce the public health burden of ambient PM by targeting the sources of PM that produce the most harmful chemical constituents. Currently, the scientific basis for developing new multi-pollutant air quality intervention strategies is insufficient and available statistical methods do not adequately address the challenges presented by the data. The investigators have developed widely-used statistical methodology for conducting national epidemiological studies of ambient air pollution and health and have identified the critical need for a new set of statistical methods for assessing the health effects of complex air pollutant mixtures. The first aim will develop a spatial-temporal Bayesian hierarchical multivariate receptor model for identifying sources of air pollution chemical mixtures and estimating their effect on population health outcomes. Innovation focuses on (a) conducting an integrated national assessment of the health effects of pollution sources; (b) the use of spatial-temporal models for source apportionment; and (c) the introduction of national databases on source profiles and emissions to inform model development and parameter estimation. The second aim will develop novel multivariate spatial-temporal models for estimating community-level health effects of ambient environmental exposures, accounting for spatial misalignment and measurement error. The third aim will apply the newly developed statistical methods to data from a national study of air pollution and health outcomes, the Medicare Cohort Air Pollution Study, to (a) estimate short-term population health effects of PM sources on a national, regional, and local scale; (b) estimate short- and long-term health effects of PM constituents and identify the sources of toxic constituents. The fourth aim will develop modular and extensible open source software implementing new statistical methods. By providing critical evidence about the relative toxicities of PM constituents and sources in a national study and by developing novel statistical approaches to overcome current methodological challenges, the aims of this application will lay the foundation for targeted interventions and air quality control strategies that will have a substantial public health impact across broad populations.
描述(由申请人提供):复杂环境健康数据的统计方法 项目摘要 环境颗粒物(PM)空气污染是对公众健康的主要威胁,但目前制定空气质量标准的方法并未反映空气污染的复杂多污染物性质PM 化学混合物。最近的研究表明,通过针对产生最有害化学成分的 PM 来源,可能存在减少环境 PM 的公共健康负担的机会。目前,制定新的多污染物空气质量干预策略的科学依据不足,现有的统计方法无法充分应对数据带来的挑战。研究人员开发了广泛使用的统计方法来进行环境空气污染和健康的国家流行病学研究,并确定迫切需要一套新的统计方法来评估复杂空气污染物混合物对健康的影响。第一个目标是开发时空贝叶斯分层多元受体模型,用于识别空气污染化学混合物的来源并估计其对人口健康结果的影响。创新的重点是 (a) 对污染源的健康影响进行全国综合评估; (b) 使用时空模型进行源解析; (c) 引入关于源概况和排放的国家数据库,为模型开发和参数估计提供信息。第二个目标将开发新颖的多元时空模型,用于估计周围环境暴露对社区级健康的影响,并考虑空间错位和测量误差。第三个目标是将新开发的统计方法应用于国家空气污染和健康结果研究(即医疗保险队列空气污染研究)的数据,以 (a) 估计 PM 源对国家、区域、和局部规模; (b) 估计 PM 成分的短期和长期健康影响并确定有毒成分的来源。第四个目标是开发模块化和可扩展的开源软件,实施新的统计方法。通过在一项国家研究中提供有关 PM 成分和来源的相对毒性的关键证据,并通过开发新的统计方法来克服当前的方法学挑战,该应用程序的目标将为有针对性的干预措施和空气质量控制策略奠定基础,这些策略将具有对广大人群的公共卫生产生重大影响。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meta-Analytic Approaches for Multistressor Dose-Response Function Development: Strengths, Limitations, and Case Studies.
多应激剂量反应函数开发的荟萃分析方法:优点、局限性和案例研究。
- DOI:10.1111/risa.12208
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Levy,JonathanI;Fabian,MPatricia;Peters,JunenetteL
- 通讯作者:Peters,JunenetteL
Measurement error in air pollution epidemiology: Guidance for uncertain times.
- DOI:10.1002/env.2242
- 发表时间:2013-12
- 期刊:
- 影响因子:1.7
- 作者:Peng, Roger D.
- 通讯作者:Peng, Roger D.
Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties.
- DOI:10.1097/ede.0000000000000556
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Liu JC;Wilson A;Mickley LJ;Dominici F;Ebisu K;Wang Y;Sulprizio MP;Peng RD;Yue X;Son JY;Anderson GB;Bell ML
- 通讯作者:Bell ML
Acute effects of ambient ozone on mortality in Europe and North America: results from the APHENA study.
- DOI:10.1007/s11869-012-0180-9
- 发表时间:2013-06-01
- 期刊:
- 影响因子:5.1
- 作者:Peng, Roger D.;Samoli, Evangelia;Luu Pham;Dominici, Francesca;Touloumi, Giota;Ramsay, Tim;Burnett, Richard T.;Krewski, Daniel;Le Tertre, Alain;Cohen, Aaron;Atkinson, Richard W.;Anderson, H. Ross;Katsouyanni, Klea;Samet, Jonathan M.
- 通讯作者:Samet, Jonathan M.
Exposure to coarse particulate matter during gestation and birth weight in the U.S.
- DOI:10.1016/j.envint.2016.06.011
- 发表时间:2016-09
- 期刊:
- 影响因子:11.8
- 作者:Ebisu K;Berman JD;Bell ML
- 通讯作者:Bell ML
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER PENG其他文献
ROGER PENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROGER PENG', 18)}}的其他基金
NIH R25 - A Training Module for Reproducible Data Science Research
NIH R25 - 可重复数据科学研究的培训模块
- 批准号:
10807490 - 财政年份:2021
- 资助金额:
$ 36.47万 - 项目类别:
A Training Module for Reproducible Data Science Research
可重复数据科学研究的培训模块
- 批准号:
10409825 - 财政年份:2021
- 资助金额:
$ 36.47万 - 项目类别:
A Training Module for Reproducible Data Science Research
可重复数据科学研究的培训模块
- 批准号:
10199242 - 财政年份:2021
- 资助金额:
$ 36.47万 - 项目类别:
NIH R25 - A Training Module for Reproducible Data Science Research
NIH R25 - 可重复数据科学研究的培训模块
- 批准号:
10663171 - 财政年份:2021
- 资助金额:
$ 36.47万 - 项目类别:
Extreme Heat and Human Health: Characterizing Vulnerability in a Changing Climate
极端高温与人类健康:描述气候变化中的脆弱性
- 批准号:
8308530 - 财政年份:2011
- 资助金额:
$ 36.47万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8402810 - 财政年份:2011
- 资助金额:
$ 36.47万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8231319 - 财政年份:2011
- 资助金额:
$ 36.47万 - 项目类别:
Extreme Heat and Human Health: Characterizing Vulnerability in a Changing Climate
极端高温与人类健康:描述气候变化中的脆弱性
- 批准号:
8148057 - 财政年份:2011
- 资助金额:
$ 36.47万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8600272 - 财政年份:2011
- 资助金额:
$ 36.47万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8019720 - 财政年份:2011
- 资助金额:
$ 36.47万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 36.47万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 36.47万 - 项目类别:
GCS-CEAS: a novel tool for exposure assessment during disaster response
GCS-CEAS:灾难响应期间暴露评估的新工具
- 批准号:
10699942 - 财政年份:2023
- 资助金额:
$ 36.47万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 36.47万 - 项目类别:
Wildfires and arrhythmias: evaluating associations and intervention strategies
野火和心律失常:评估关联和干预策略
- 批准号:
10861971 - 财政年份:2023
- 资助金额:
$ 36.47万 - 项目类别: