Using Digital Signals from Credit Data for Early Detection of Alzheimer's Disease and Related Dementias

使用信用数据中的数字信号早期检测阿尔茨海默病和相关痴呆症

基本信息

  • 批准号:
    10590416
  • 负责人:
  • 金额:
    $ 69.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary The value of early diagnosis for Alzheimer’s disease and related dementias (ADRD) is increasingly recognized. However, available diagnostic tools rely primarily on the manifestation of cognitive symptoms that interfere with everyday activities, and screening tools to support earlier identification of individuals with ADRD are lacking. Credit data represent a unique foundational data source upon which machine learning algorithms can be developed to identify individuals at risk for ADRD and facilitate earlier diagnosis. The strength of the information signal from credit data for identifying those at risk for ADRD is supported by previous research that finds, first, that significant limitations and rapid declines in financial capacity are a hallmark of early-stage disease and, second, that afflicted individuals and their families experience negative economic consequences during early-stage disease. We propose using a massive database—that we have already constructed—of credit data from Equifax which is the basis of the Federal Reserve Bank of New York’s Consumer Credit Panel (CCP), merged at the individual level using a unique common identifier (Social Security number), with Medicare enrollment and claims data. The data encompass more than 84 million person-years of data in total, with more than 1.7 million individuals who have been diagnosed with ADRD. Our specific aims are to: (1) Estimate the effects of early-stage ADRD on a wide range of financial outcomes measured in credit data, allowing for potential differences in the effects of early-stage ADRD depending on characteristics such as race/ethnicity, education, gender, and household structure; (2) Apply machine learning methods to our already- developed massive data base with merged credit (CCP) and Medicare data in order to develop algorithms that are capable of identifying individuals at risk for ADRD; and (3) Assess the robustness of the algorithm to the inclusion of newly available years of Medicare claims and enrollment data. The findings from Specific Aim 1 are important for identifying and understanding the specific financial outcomes individuals with ADRD are most susceptible to during the early stage of disease and will help inform the machine learning models in Specific Aims 2 and 3.
项目概要 阿尔茨海默氏病和相关痴呆症 (ADRD) 的早期诊断价值日益凸显 然而,现有的诊断工具主要依赖于认知症状的表现。 干扰日常活动,以及支持早期识别 ADRD 患者的筛查工具 信用数据是机器学习算法所依赖的独特的基础数据源。 可以开发用于识别有 ADRD 风险的个体并促进早期诊断。 先前的研究支持来自信用数据的信息信号,用于识别 ADRD 风险人群 首先,财务能力的严重限制和迅速下降是早期阶段的一个标志。 其次,受影响的个人及其家庭会遭受负面的经济后果 我们建议使用我们已经构建的庞大数据库。 来自 Equifax 的信贷数据,这是纽约联邦储备银行消费者信贷小组的基础 (CCP),使用唯一的通用标识符(社会安全号码)在个人层面进行合并, 该数据总共包含超过 8400 万人年的数据, 超过 170 万人被诊断患有 ADRD,我们的具体目标是:(1) 估计早期 ADRD 对信用数据衡量的各种财务结果的影响, 考虑到早期 ADRD 的影响存在潜在差异,具体取决于以下特征: 种族/民族、教育、性别和家庭结构;(2)将机器学习方法应用于我们已经- 开发了包含合并信用 (CCP) 和医疗保险数据的海量数据库,以便开发算法 能够识别有 ADRD 风险的个人;以及 (3) 评估算法对 ADRD 的稳健性; 纳入新获得的 Medicare 索赔和登记数据年份。特定目标 1 的调查结果。 对于识别和理解 ADRD 患者最常遭受的具体财务结果非常重要 在疾病的早期阶段容易受到影响,并将有助于为特定的机器学习模型提供信息 目标 2 和 3。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CAROLE R GRESENZ其他文献

CAROLE R GRESENZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 69.14万
  • 项目类别:
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
  • 批准号:
    10727328
  • 财政年份:
    2023
  • 资助金额:
    $ 69.14万
  • 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
  • 批准号:
    10723570
  • 财政年份:
    2023
  • 资助金额:
    $ 69.14万
  • 项目类别:
GEMSSTAR PERSPIRE-COPD
GEMSSTAR 出汗-慢性阻塞性肺病
  • 批准号:
    10724784
  • 财政年份:
    2023
  • 资助金额:
    $ 69.14万
  • 项目类别:
Infant diet and cardiometabolic risk among children born preterm
早产儿的婴儿饮食和心脏代谢风险
  • 批准号:
    10716587
  • 财政年份:
    2023
  • 资助金额:
    $ 69.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了