Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
基本信息
- 批准号:10589307
- 负责人:
- 金额:$ 50.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAffectAlgorithmsAllelesAnatomyAnimal ModelAreaBindingBinding SitesBioinformaticsBiological AssayBiological ModelsCDH1 geneCandidate Disease GeneCellsChIP-seqCodeDNADataData AnalysesData SetDevelopmentDifferentiated GeneDiseaseElementsEmbryoEmbryo LossEmbryonic DevelopmentEnhancersEpidermisFamilyGene ExpressionGenesGeneticGenetic TranscriptionGenotypeHealthHeritabilityHumanIndividualKnowledgeLinkMammalian GeneticsModelingMusNasal cavityOralOutcomeOutcome StudyPalatePathogenesisPathogenicityPathologicPatientsPeridermPopulationPositioning AttributePublic DomainsRegulatory ElementReporterResearchRiskRisk AssessmentRoleSamplingSeriesSocietiesSorting - Cell MovementStructural Congenital AnomaliesStructureSystems BiologyTestingTimeTissue DifferentiationTissuesTrainingTransgenic OrganismsUntranslated RNAVariantVertebratesWild Type MouseZebrafishbaseclinically significantcraniofacialdifferential expressiondisorder riskembryo tissueexomeexperimental studygene regulatory networkgenome sequencinggenome wide association studyimprovedin vivoloss of functionloss of function mutationmachine learning algorithmmembermodel buildingmutantnoveloral cavity epitheliumorofacialorofacial cleftparalogous genepromoterrisk variantsupport vector machinetooltranscription factortranscriptome sequencingwhole genome
项目摘要
Our understanding of the pathogenic mechanisms for orofacial clefting (OFC) is limited by the fact that less
than half of the heritable risk for this disorder has been assigned to specific genes. Towards identifying
pathological sequence variants among the many irrelevant ones detected in exomes and whole genomes of
patients with this disorder, an understanding of the gene regulatory networks (GRNs) that govern the
development of relevant tissues, including the oral periderm, is essential. We propose a systems biology
approach to analyzing the periderm GRN. Using this approach in the past enabled us to identify three novel
OFC risk genes. We will utilize two model organisms, zebrafish and mouse, because the periderm
differentiation GRN appears to be highly conserved. In zebrafish, the periderm differentiates very early in
embryogenesis, greatly facilitating the execution and interpretation of genetic perturbation analyses. Mouse, on
the other hand, has the advantage that its craniofacial anatomy is more similar to that of humans. In Aim 1, we
will determine the zebrafish periderm differentiation GRN using a state-of-the-art network inference algorithm,
NetProphet 2. This tool carries out both a coexpression analysis and a differential expression analysis. Input
data sets will include RNA-seq expression profiles we will generate from loss-of-function (LOF) embryos for 4
key transcription factors (TF) known to participate in this GRN. We will also identify the direct gene linkages of
these key TFs in the periderm GRN. Finally, we will test a novel candidate member of the periderm GRN,
Tead, by carrying out LOF tests in zebrafish, thereby exploiting the strength of this model system. In Aim 2 we
will deduce the murine oral periderm differentiation GRN, also using the NetProphet algorithm. Input datasets
will include expression profiles of periderm isolated from the palate shelves of wild-type mouse embryos, and
from heterozygous mutants of three key TFs: Irf6, Grhl3 and Tfap2a. For each of the mutant genotypes there is
evidence of abnormal periderm differentiation. We will also identify murine periderm enhancer candidates by
sorting GFP-positive and -negative cells from Krt17-gfp transgenic embryos, performing ATAC-seq on both
populations, and H3K27Ac ChIP-seq on cells from palate shelves and the nasal cavity. As in Aim 1, we will
also identify the direct gene linkages of the key TFs. We will train a machine learning algorithm on palate
periderm enhancers, and use the resulting scoring function to prioritize OFC-associated SNPs near genes that
are expressed in periderm for those that are likely to directly affect risk for OFC. Finally, we will perform allele-
specific reporter assays on the top candidate SNPs from each of three loci. The expected outcome is a deeper
understanding of the specific TFs and cis-regulatory elements that control differentiation of the periderm. This
will have a broad impact because it will enable human geneticists to prioritize candidate risk variants that
emerge from whole-exome and -genome sequencing analyses of OFC.
我们对口面裂 (OFC) 致病机制的理解受到以下事实的限制:
这种疾病的遗传风险有一半以上归因于特定基因。走向识别
在外显子组和全基因组中检测到的许多不相关序列中的病理序列变异
患有这种疾病的患者,了解控制该疾病的基因调控网络(GRN)
相关组织(包括口腔周皮)的发育至关重要。我们提出了系统生物学
分析周皮 GRN 的方法。过去使用这种方法使我们能够识别出三种新颖的
OFC 风险基因。我们将利用两种模型生物,斑马鱼和小鼠,因为周皮
分化GRN 似乎是高度保守的。斑马鱼的周皮分化很早
胚胎发生,极大地促进了遗传扰动分析的执行和解释。鼠标,打开
另一方面,它的优点是其颅面解剖结构与人类更相似。在目标 1 中,我们
将使用最先进的网络推理算法确定斑马鱼周皮分化 GRN,
NetProphet 2。该工具可进行共表达分析和差异表达分析。输入
数据集将包括我们将从 4 个功能丧失 (LOF) 胚胎中生成的 RNA-seq 表达谱
已知参与此 GRN 的关键转录因子 (TF)。我们还将确定以下基因的直接联系:
这些关键的 TF 位于周皮 GRN 中。最后,我们将测试 periderm GRN 的一个新候选成员,
Tead 通过在斑马鱼中进行 LOF 测试,从而利用了该模型系统的优势。在目标 2 中,我们
将同样使用 NetProphet 算法推导出小鼠口腔周皮分化 GRN。输入数据集
将包括从野生型小鼠胚胎上颚架分离的周皮的表达谱,以及
来自三个关键 TF 的杂合突变体:Irf6、Grhl3 和 Tfap2a。对于每个突变基因型,有
周皮分化异常的证据。我们还将通过以下方式确定小鼠周皮增强剂候选者:
从 Krt17-gfp 转基因胚胎中分选 GFP 阳性和阴性细胞,对两者进行 ATAC-seq
对上颚架和鼻腔细胞进行 H3K27Ac ChIP-seq。正如目标 1 一样,我们将
还确定了关键转录因子的直接基因联系。我们将训练味觉机器学习算法
周皮增强子,并使用所得的评分函数来优先考虑靠近基因的 OFC 相关 SNP
对于那些可能直接影响 OFC 风险的因素,在周皮中表达。最后,我们将执行等位基因
对三个位点中每个位点的顶级候选 SNP 进行特定报告分析。预期的结果是更深层次的
了解控制周皮分化的特定转录因子和顺式调控元件。这
将产生广泛的影响,因为它将使人类遗传学家能够优先考虑候选风险变异
来自 OFC 的全外显子组和基因组测序分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Aaron Cornell其他文献
Robert Aaron Cornell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Aaron Cornell', 18)}}的其他基金
Genetic underpinnings of craniofacial disorders explored with spatial sequencing
通过空间测序探索颅面疾病的遗传基础
- 批准号:
10712635 - 财政年份:2023
- 资助金额:
$ 50.38万 - 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
- 批准号:
10521268 - 财政年份:2022
- 资助金额:
$ 50.38万 - 项目类别:
Regulation of the Melanocyte Lineage by the AP2 Transcription Factor Family
AP2 转录因子家族对黑素细胞谱系的调节
- 批准号:
10607024 - 财政年份:2022
- 资助金额:
$ 50.38万 - 项目类别:
Cornell- Common Fund Data Supplement Regulation of the Melanocyte Lineage by the AP2 Transcription Factor Family
康奈尔大学共同基金数据补充 AP2 转录因子家族对黑素细胞谱系的调节
- 批准号:
9985505 - 财政年份:2019
- 资助金额:
$ 50.38万 - 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
- 批准号:
9900769 - 财政年份:2019
- 资助金额:
$ 50.38万 - 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
- 批准号:
10058264 - 财政年份:2019
- 资助金额:
$ 50.38万 - 项目类别:
Functional tests of non-coding DNA variants associated with risk for orofacial clefting.
与口面部裂风险相关的非编码 DNA 变异的功能测试。
- 批准号:
10614747 - 财政年份:2018
- 资助金额:
$ 50.38万 - 项目类别:
Functional tests of non-coding DNA variants associated with risk for orofacial clefting
与口面部裂风险相关的非编码 DNA 变异的功能测试
- 批准号:
9924262 - 财政年份:2018
- 资助金额:
$ 50.38万 - 项目类别:
Regulation of the melanocyte lineage by the AP2 transcription factor family
AP2 转录因子家族对黑素细胞谱系的调节
- 批准号:
8832130 - 财政年份:2014
- 资助金额:
$ 50.38万 - 项目类别:
Regulation of the melanocyte lineage by the AP2 transcription factor family
AP2 转录因子家族对黑素细胞谱系的调节
- 批准号:
8832130 - 财政年份:2014
- 资助金额:
$ 50.38万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 50.38万 - 项目类别:
Using auxin to understand context-dependent hormone response
使用生长素了解背景依赖性激素反应
- 批准号:
10605909 - 财政年份:2023
- 资助金额:
$ 50.38万 - 项目类别:
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 50.38万 - 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
- 批准号:
10521268 - 财政年份:2022
- 资助金额:
$ 50.38万 - 项目类别: