Deciphering the 3D genome of pediatric brain tumors
破译儿童脑肿瘤的 3D 基因组
基本信息
- 批准号:10585741
- 负责人:
- 金额:$ 39.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbnormal CellAffectAge-MonthsArchitectureBiologyBrainBrain NeoplasmsCell Differentiation processCell LineCellsCerebellumChildChildhoodChildhood Brain NeoplasmChildhood Malignant Brain TumorChromatinCodeComputing MethodologiesDNA SequenceDataData SetDefectDevelopmentDevelopmental ProcessDiseaseEmbryonic DevelopmentEpendymomaEpigenetic ProcessEtiologyEventFrequenciesFundingFutureGene ExpressionGene Expression RegulationGeneticGenomeGenomicsGenotypeGliomaInstitutesLeadLinkMalignant - descriptorMalignant Childhood NeoplasmMalignant NeoplasmsMapsMedicineModelingMorbidity - disease rateNeurologic EffectNormal tissue morphologyOutputPathogenesisPatientsPediatric HospitalsPediatric NeoplasmPhiladelphiaPilot ProjectsPlayProteinsPublishingRecurrenceRefractoryResearchRhabdoid TumorRoleSHH geneSMARCA4 geneSMARCB1 geneSamplingSingle Nucleotide PolymorphismSolid NeoplasmTestingTherapeuticTissuesTrainingUntranslated RNAVariantaggressive therapybioinformatics pipelinecohortdata integrationdeep learningdeep learning modelexperimental studygenetic variantinnovationinsertion/deletion mutationinterestmedulloblastomamultidisciplinarynerve stem cellnew therapeutic targetnovelpostnatal developmentprogramspromoterprototypesingle-cell RNA sequencingsmoothened signaling pathwaystem cellstooltranscriptometumortumorigenesiswhole genome
项目摘要
Project Summary
Pediatric brain tumors are the most frequent cause of morbidity in children with solid tumors. Importantly, the
aggressive therapeutic regiments often lead to debilitating neurological effects. The realization that
developmental processes critical to brain development are also deregulated in cancer has provided new hope
for understanding and treating brain tumors. Indeed, single cell-RNAseq analyses have further demonstrated
the role of defects in lineage determination for pediatric brain tumors. To discover novel drivers of tumorigenesis,
we will focus on the function of three-dimensional (3D) genome folding in pediatric brain tumors. Indeed, 3D
chromatin interactions are involved in gene expression regulation, and changes in genome folding are linked to
cell identity acquisition during development. While there is increasing interest in elucidating the function of 3D
genome architecture during developmental processes and in cancer, how the 3D genome is organized in
different pediatric brain tumors and its roles in tumor formation and progression are unknown. We hypothesize
that disrupted 3D genome folding during embryonic or postnatal development alters gene expression leading to
abnormal cell differentiation and tumorigenesis in the developing brain. To test our hypothesis, we will
comprehensively interrogate the genomes of pediatric brain tumors for non-coding variants that may affect 3D
genome folding. We will use a deep-learning model called Akita that predicts 3D chromatin interaction
frequencies from genome sequence alone. Because Akita only requires DNA sequence as input, we can predict
the effect of any variant within a single framework that accommodates single-nucleotide variants (SNVs),
insertion/deletions (indels), and structural variation (SVs). Akita will be used with pediatric brain whole genome
sequences (WGS) from Gabriella Miller Kids First (KF) plus chromatin capture, epigenetic, and expression data
from the 4D Nucleome (4DN) and Genotype-Tissue Expression (GTEx) programs in the following aims: 1)
Determine the 3D genome architecture of Atypical teratoid/rhabdoid tumor AT/RT tumors. We have initiated our
study using AT/RT, tumors thought to be due to defects in early development11 and the most common brain
tumor in children less than six months of age. 1.A. We will develop a bioinformatics pipeline that uses Akita to
quantify how much a genetic variant is predicted to disrupt 3D chromatin interactions in AT/RT tumors. 1.B. We
will validate and determine the functional relevance of 3D genomic folding disruptions observed in AT/RT tumors.
2) Determine the 3D genome architecture of malignant pediatric tumors. We will extend our analyses with Akita
to additional malignant pediatric brain tumors, focusing for this pilot project on the most malignant and treatment
refractory tumors. This innovative project, using a new deep-learning tool Akita, will lead to, novel research
hypotheses and will accelerate the discovery of additional regulators of pediatric cancer tumorigenesis and thus
to potential therapeutic strategies for these devastating diseases.
项目概要
儿童脑肿瘤是实体瘤儿童发病的最常见原因。重要的是,
积极的治疗方案常常会导致神经系统衰弱。认识到
对大脑发育至关重要的发育过程在癌症中也被解除管制,这提供了新的希望
用于了解和治疗脑肿瘤。事实上,单细胞 RNAseq 分析进一步证明
缺陷在儿童脑肿瘤谱系测定中的作用。为了发现肿瘤发生的新驱动因素,
我们将重点关注三维(3D)基因组折叠在儿科脑肿瘤中的功能。确实,3D
染色质相互作用涉及基因表达调控,基因组折叠的变化与
发育过程中细胞身份的获取。尽管人们对阐明 3D 功能越来越感兴趣
发育过程和癌症中的基因组结构,3D 基因组如何组织
不同的儿童脑肿瘤及其在肿瘤形成和进展中的作用尚不清楚。我们假设
在胚胎或出生后发育过程中破坏 3D 基因组折叠,改变基因表达,导致
发育中大脑中的异常细胞分化和肿瘤发生。为了检验我们的假设,我们将
全面询问儿童脑肿瘤的基因组中可能影响 3D 的非编码变异
基因组折叠。我们将使用名为 Akita 的深度学习模型来预测 3D 染色质相互作用
仅来自基因组序列的频率。因为秋田只需要 DNA 序列作为输入,我们就可以预测
容纳单核苷酸变体(SNV)的单一框架内任何变体的影响,
插入/删除 (indel) 和结构变异 (SV)。秋田将用于儿科大脑全基因组
来自 Gabriella Miller Kids First (KF) 的序列 (WGS) 以及染色质捕获、表观遗传和表达数据
来自 4D 核组 (4DN) 和基因型组织表达 (GTEx) 计划,目标如下:1)
确定非典型畸胎瘤样/横纹肌样瘤 AT/RT 肿瘤的 3D 基因组结构。我们已经启动了我们的
使用 AT/RT 进行的研究中,肿瘤被认为是由于早期发育缺陷11和最常见的大脑
六个月以下儿童的肿瘤。 1.A.我们将开发一个生物信息学管道,利用秋田
量化预测遗传变异在 AT/RT 肿瘤中破坏 3D 染色质相互作用的程度。 1.B.我们
将验证并确定在 AT/RT 肿瘤中观察到的 3D 基因组折叠破坏的功能相关性。
2) 确定儿科恶性肿瘤的3D基因组结构。我们将扩展对秋田的分析
到其他恶性儿科脑肿瘤,该试点项目的重点是最恶性的和治疗
难治性肿瘤。这个创新项目使用新的深度学习工具 Akita,将带来新颖的研究
假设并将加速发现儿科癌症肿瘤发生的其他调节因子,从而
这些破坏性疾病的潜在治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nadia Dahmane其他文献
Nadia Dahmane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nadia Dahmane', 18)}}的其他基金
A Mass Spectrometry Approach to the Genetic and Epigenetic Mechanisms Controlling Neuronal Identity
控制神经元身份的遗传和表观遗传机制的质谱方法
- 批准号:
10561685 - 财政年份:2020
- 资助金额:
$ 39.12万 - 项目类别:
A Mass Spectrometry Approach to the Genetic and Epigenetic Mechanisms Controlling Neuronal Identity
控制神经元身份的遗传和表观遗传机制的质谱方法
- 批准号:
10339433 - 财政年份:2020
- 资助金额:
$ 39.12万 - 项目类别:
Inhibitors of Hedgehog Signaling For Brain Cancer Chemotherapy
脑癌化疗的 Hedgehog 信号抑制剂
- 批准号:
7654776 - 财政年份:2009
- 资助金额:
$ 39.12万 - 项目类别:
相似国自然基金
组织细胞外基质异常对机体肿瘤免疫监视效应的影响及作用机制
- 批准号:32370839
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于单细胞转录组测序解析ATP6V1E1基因影响骨髓增生异常综合征红系增殖分化的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DAMPs相关铁代谢异常对骨肉瘤CD24+细胞亚群干性维持和免疫逃逸的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
左归饮对肿瘤相关巨噬细胞极化介导食管癌糖代谢异常的影响
- 批准号:
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
肥胖和胰岛素抵抗小鼠卵母细胞和早期胚胎脂肪酸代谢异常对表观重塑的影响与代际传递
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 39.12万 - 项目类别:
Benefits of nicotinamide in placental development and in preeclamsia
烟酰胺对胎盘发育和先兆子痫的益处
- 批准号:
10469439 - 财政年份:2021
- 资助金额:
$ 39.12万 - 项目类别:
Benefits of nicotinamide in placental development and in preeclamsia
烟酰胺对胎盘发育和先兆子痫的益处
- 批准号:
10298632 - 财政年份:2021
- 资助金额:
$ 39.12万 - 项目类别:
Elucidating the Endothelial-Smooth Muscle Cell Interactions in Marfan Syndrome Using iPSCs
使用 iPSC 阐明马凡氏综合症中内皮-平滑肌细胞的相互作用
- 批准号:
10597514 - 财政年份:2021
- 资助金额:
$ 39.12万 - 项目类别: