Modeling of the Magnetic Particle Imaging Signal Due to Magnetic Nanoparticles
磁性纳米粒子产生的磁性粒子成像信号的建模
基本信息
- 批准号:9024525
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAngiographyAnisotropyArteriesAttentionCaliberCellsCharacteristicsChronic Kidney FailureCoagulation ProcessComputer SimulationContrast MediaCoronaryCoronary arteryDependenceDetectionDevelopmentDisadvantagedEnvironmentEquationFoundationsFutureFuture GenerationsHealthHybridsImageImaging TechniquesInflammationLocationMagnetic Resonance ImagingMagnetic nanoparticlesMagnetismMapsMeasurementMissionModelingMonitorMotionOrganPatientsPerformancePropertyRelaxationResearchResolutionRotationScanningShippingShipsSignal TransductionSolidSpatial DistributionSuspension substanceSuspensionsTimeTissuesTracerTranslationsViscosityWorkbioimagingcancer imagingcontrast imagingcost effectivedesignexperienceimage processingimprovedinnovationinterestiron oxidemagnetic dipolemagnetic fieldnanoparticlenoveloperationparticleresponsesimulationtheories
项目摘要
DESCRIPTION (provided by applicant): Magnetic Particle Imaging (MPI) is a new tomographic imaging technique that maps the spatial distribution of iron oxide magnetic nanoparticles (MNPs) in real time and with spatial resolution that is on par or better than other biomedical imaging techniques. Because iron oxide MNPs are nontoxic, MPI is a safe imaging alternative for Chronic Kidney Disease (CKD) patients and due to its sensitivity it is suitable for
angiography, cell tracking, cancer imaging, inflammation imaging, imaging major organs, and imaging of coronary arteries. Recently attention has shifted towards development of MNPs with ideal MPI signal characteristics. Unfortunately, these efforts are hampered by a lack of theories that predict the MPI signal due to MNP tracers, taking into account the finite relaxation dynamics of MNPs in time-varying magnetic fields typical of MPI. Because of this, most prior work on development of MNP MPI tracers has been limited to trial-and-error characterization of synthesized particles, without a theory guiding their rational design. What is needed is a solid theoretical foundation that will allow rational design of future generations of MNP MPI tracers and tuning of MPI magnetic field conditions to yield optimal image contrast and resolution. The proposed research will develop a theoretical foundation relating MNP properties (e.g., core size, hydrodynamic diameter, domain magnetization, magnetic anisotropy, particle-particle interactions, etc.) and MPI magnetic field conditions (strength of bias and excitation field, magnetic field gradient strength, scan rate, etc.) to the MPI signal strength and resolution. The proposed approach is unique and distinct from other work because we will develop stochastic computer simulation models of the response of MNPs to the magnetic fields typical of MPI, taking into account nanoparticle translation, physical rotation, internal dipole rotation, and particle-particle magnetic interactions. These models will enable systematic study of the large parameter space of particle properties and magnetic field conditions typical of MPI. The proposed work is significant because it will provide a much-needed theoretical understanding of the relation- ship between particle properties, MPI magnetic field conditions, and MPI signal strength and resolution. The proposed work is also significant because it will yield rules for the rational design of MNP MPI tracers with optimal signal strength and resolution and could also suggest novel applications of MPI beyond imaging of MNP tracer location and motion. The proposed work is innovative because it will yield this theoretical foundation through development of computer simulation platforms to model the response of MNPs to the magnetic fields generated in MPI through a combination of Brownian dynamics simulations of particle translation and rotation and the Landau-Lifshitz-Gilbert equation describing internal magnetic dipole rotation, an approach that is currently unexplored. The proposed work is also innovative because these computer simulation platforms will be used to explore the dependence of the MPI signal on MNP properties and MPI magnetic field conditions, yielding design rules to guide development of future generations of MPI tracers and MPI applications.
描述(由适用提供):磁性粒子成像(MPI)是一种新的断层成像技术,可实时绘制氧化铁磁性纳米颗粒(MNP)的空间分布,并且比其他生物医学成像技术的空间分辨率是在PAR或更好的空间分辨率上。由于氧化铁MNP是无毒的,因此MPI是慢性肾脏疾病(CKD)患者的安全成像替代品,由于其敏感性,它适用于
血管造影,细胞跟踪,癌症成像,炎症成像,成像主要器官以及冠状动脉成像。最近的注意力已转向具有理想MPI信号特征的MNP的发展。不幸的是,由于缺乏预测MNP示踪剂引起的MPI信号的理论,这些努力受到了阻碍,并考虑了MPI典型的时变磁场中MNP的有限松弛动力学。因此,大多数先前在MNP MPI示踪剂开发方面的工作仅限于合成粒子的反复试验表征,而没有理论指导其理性设计。需要的是一个坚实的理论基础,该基础将允许将后代的MNP MPI示踪剂和MPI磁场条件调整进行合理设计,以产生最佳的图像对比度和分辨率。拟议的研究将建立一个理论基础,该基础与MNP特性(例如核心大小,水动力直径,域磁化,磁各向异性,粒子粒子相互作用等)和MPI磁场条件(偏置和兴奋场的强度,磁场梯度强度,SCAN强度等)与MPI信号强度和分辨率。提出的方法是独特的,并且与其他工作不同,因为我们将考虑MNPS对MPI典型磁场的响应的随机计算机模拟模型。考虑纳米颗粒的翻译,物理旋转,内部偶极旋转和颗粒粒子磁相互作用。这些模型将对粒子特性的大参数空间和MPI的磁场条件进行系统研究。提出的工作很重要,因为它将对粒子特性,MPI磁场条件以及MPI信号强度和分辨率之间的关系提供急需的理论理解。提出的工作也很重要,因为它将为具有最佳信号强度和分辨率的MNP MPI示踪剂的合理设计产生规则,并且还可以暗示MPI的新应用,而不是MNP示踪位置和运动的成像。拟议的工作具有创新性,因为它将通过开发计算机模拟平台来产生这一理论基础,以模拟MNP对MPI中磁场的响应,这是通过Brownian动力学模拟粒子翻译和旋转的组合以及Landau-Lifshitz-Gilbert方程的结合,描述了当前的内部磁性载体旋转,目前是意外的。拟议的工作也具有创新性,因为这些计算机仿真平台将用于探索MPI信号对MNP属性和MPI磁场条件的依赖性,从而产生了设计规则,以指导MPI Tracers和MPI应用的子孙后代的开发。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.
- DOI:10.1021/acsnano.7b00609
- 发表时间:2017-02-28
- 期刊:
- 影响因子:17.1
- 作者:Unni M;Uhl AM;Savliwala S;Savitzky BH;Dhavalikar R;Garraud N;Arnold DP;Kourkoutis LF;Andrew JS;Rinaldi C
- 通讯作者:Rinaldi C
Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics.
- DOI:10.1063/1.4978003
- 发表时间:2017-05
- 期刊:
- 影响因子:1.6
- 作者:Garraud N;Dhavalikar R;Maldonado-Camargo L;Arnold DP;Rinaldi C
- 通讯作者:Rinaldi C
Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
- DOI:10.1016/j.jmmm.2016.06.038
- 发表时间:2016-12-01
- 期刊:
- 影响因子:2.7
- 作者:Dhavalikar R;Rinaldi C
- 通讯作者:Rinaldi C
Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.
- DOI:10.1088/1361-6560/aad97d
- 发表时间:2018-09-06
- 期刊:
- 影响因子:3.5
- 作者:Garraud N;Dhavalikar R;Unni M;Savliwala S;Rinaldi C;Arnold DP
- 通讯作者:Arnold DP
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
- DOI:10.1021/acsnano.8b00893
- 发表时间:2018-04-24
- 期刊:
- 影响因子:17.1
- 作者:Tay ZW;Chandrasekharan P;Chiu-Lam A;Hensley DW;Dhavalikar R;Zhou XY;Yu EY;Goodwill PW;Zheng B;Rinaldi C;Conolly SM
- 通讯作者:Conolly SM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos M Rinaldi-Ramos其他文献
Carlos M Rinaldi-Ramos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos M Rinaldi-Ramos', 18)}}的其他基金
NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
- 批准号:
10876754 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10450938 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10365339 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10634620 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10621153 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
- 批准号:
10527640 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
8954155 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
9086452 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep Radiomic Analysis of Coronary Heart Disease with Lung Screening CT
通过肺部筛查 CT 进行冠心病的深度放射组学分析
- 批准号:
10009810 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Rapid Pediatric Cardiovascular MRI without Contrast Agent or Anesthesia
无需造影剂或麻醉的快速儿童心血管 MRI
- 批准号:
9308233 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
OCT Angiography for Neovascular Age-related Macular Degeneration
OCT 血管造影治疗新生血管性年龄相关性黄斑变性
- 批准号:
8750633 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
OCT Angiography for Neovascular Age-related Macular Degeneration
OCT 血管造影治疗新生血管性年龄相关性黄斑变性
- 批准号:
8918630 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Optical Tomographic Imaging of Peripheral Arterial Disease
周围动脉疾病的光学断层成像
- 批准号:
8724239 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别: