Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
基本信息
- 批准号:10621153
- 负责人:
- 金额:$ 47.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Adoptive Cell TransfersAffectAnimalsAnisotropyBenchmarkingBiodistributionBiological AssayBiomedical EngineeringBlood Circulation TimeCancer ModelCell CountCell SurvivalCell TherapyCellsChargeCoculture TechniquesComputer ModelsCoupledCytotoxic T-LymphocytesDefectDiameterDiseaseDoseElectron MicroscopyElementsEnvironmentEuthanasiaExocytosisFailureFlow CytometryFluorescence MicroscopyFoundationsFutureGenerationsGlioblastomaGliomaGoalsImageImaging technologyImmunotherapyImpact evaluationIn VitroIntracranial NeoplasmsIonizing radiationLabelLifeLongitudinal StudiesMagnetic Resonance ImagingMagnetic nanoparticlesMagnetismMalignant NeoplasmsMeasuresMediatingMethodsModelingModificationMolecularMonitorMotivationMultimodal ImagingMusOrganOxygenPenetrationPerformancePhenotypePhysicsPolymersPreclinical TestingPropertyQualifyingQuantitative EvaluationsResearchResearch Project GrantsResolutionRouteSignal TransductionSiteSolidSolid NeoplasmSpecificityStratificationSurfaceT cell therapyT-LymphocyteTherapeuticTissuesToxic effectTracerValidationWorkbiomaterial developmentcancer cellcancer immunotherapycancer therapyclinical translationcytotoxicimaging approachimaging modalityimmune imagingimprovedin vivoinsightinstrumentationinterestiron oxide nanoparticlemagnetic fieldmelanomamolecular imagingmouse modelnanoparticleneoplastic cellnuclear imagingparticlepreclinical evaluationpublic health relevancequantitative imagingresearch and developmentresponders and non-respondersresponsesuccesssuperparamagnetismtomographytooltraffickingtreatment responsetumoruptake
项目摘要
Project Summary
A critical step in the success of adoptive cell transfer (ACT) T cell immunotherapy in solid cancers is achieving
trafficking and persistence of T cells at tumor sites, while avoiding toxicities due to T cell attack of off-target
tissues and organs. Non-invasive quantitative imaging would be a powerful tool to understand mechanisms of
action and failure of T cell immunotherapies, evaluate the impact of T cell modifications and delivery routes,
monitor off-target T cell accumulation, and stratify response to therapy on the basis of measures of T cell tumor
accumulation. This Bioengineering Research Grant project will pioneer non-invasive and quantitative tracking of
adoptive T cell cancer immunotherapy using magnetic particle imaging (MPI), a new molecular imaging modality
that enables non-invasive, unambiguous, and tomographic analysis of the whole-body distribution of
superparamagnetic iron oxide nanoparticles (SPIONs). Preliminary results demonstrate non-invasive
quantitative tracking of ACT T cells in solid intracranial tumors, synthesis of tracers with enhanced MPI sensitivity,
and current sensitivity of 5x103 T cells. The proposed work aims to improve sensitivity to 5x102 T cells and
demonstrate the accuracy of MPI in quantifying T cell biodistribution in mouse models of cancer. Modeling of
MPI physics by the PI demonstrates that tracers optimal for MPI must have uniform physical and magnetic
properties and low magnetocrystalline anisotropy, to enable fast dipole switching at large SPION diameters. The
PI has developed a new synthesis that yields defect-free SPIONs with uniform magnetic properties and low
magnetocrystalline anisotropy. The proposed work (Aim 1) will couple this new synthesis with modeling of MPI
physics and comprehensive physical and magnetic characterization to gain fundamental understanding of the
relation between SPION properties and MPI performance and to obtain SPIONs with superior sensitivity. Imaging
approaches to track T cells must not compromise their viability or function and T cells pose unique challenges
for nanoparticle labeling. The proposed work (Aim 2) will define an upper limit for labeling primary T cells with
MPI tracers without compromising viability or function using tracers that associate with T cells through charge
interactions. Preliminary studies demonstrate non-invasive tracking of T cell biodistribution in mice using MPI,
and that SPION-labeled T cells reach solid tumors after systemic administration in murine models. The proposed
work (Aim 3) will validate in vivo tracking of ACT T cell therapy using MPI against T cell counting using flow
cytometry and will evaluate dynamics of T cell accumulation in tumors longitudinally using MPI. The proposed
biomaterials-development research plan is enabled by the complementary expertise of the PI (SPIONs and MPI
physics) and Co-I (ACT T cell therapies) and access to state-of-the-art instrumentation to characterize SPION
MPI performance ex vivo and in vivo. Achieving the target sensitivity of 5x102 T cells will provide an order-of-
magnitude improvement in quantitative cell tracking sensitivity over other whole body quantitative imaging
technologies, establishing MPI as a powerful tool in the immunoimaging toolbox.
项目概要
实体癌过继细胞移植 (ACT) T 细胞免疫疗法成功的关键一步是实现
T 细胞在肿瘤部位的运输和持续存在,同时避免由于 T 细胞攻击脱靶而产生的毒性
组织和器官。非侵入性定量成像将是理解机制的有力工具
T 细胞免疫疗法的作用和失败,评估 T 细胞修饰和递送途径的影响,
监测脱靶 T 细胞积累,并根据 T 细胞肿瘤的测量对治疗反应进行分层
积累。该生物工程研究资助项目将开创非侵入性和定量跟踪
使用磁性粒子成像 (MPI)(一种新的分子成像方式)进行过继性 T 细胞癌症免疫治疗
能够对全身分布进行非侵入性、明确的断层扫描分析
超顺磁性氧化铁纳米颗粒(SPION)。初步结果表明非侵入性
定量追踪颅内实体瘤中的 ACT T 细胞,合成具有增强 MPI 敏感性的示踪剂,
以及 5x103 T 细胞的当前敏感性。拟议的工作旨在提高对 5x102 T 细胞的敏感性
证明 MPI 在量化小鼠癌症模型中 T 细胞生物分布方面的准确性。建模
PI 的 MPI 物理表明,最适合 MPI 的示踪剂必须具有均匀的物理和磁性
特性和低磁晶各向异性,可在大 SPION 直径下实现快速偶极子切换。这
PI 开发了一种新的合成方法,可产生无缺陷的 SPION,具有均匀的磁性能和低
磁晶各向异性。拟议的工作(目标 1)将把这种新的综合与 MPI 建模结合起来
物理和全面的物理和磁性表征,以获得对
SPION 特性和 MPI 性能之间的关系,并获得具有优异灵敏度的 SPION。影像学
追踪 T 细胞的方法不得损害其活力或功能,并且 T 细胞面临独特的挑战
用于纳米颗粒标记。拟议的工作(目标 2)将定义标记原代 T 细胞的上限
MPI 示踪剂使用通过电荷与 T 细胞关联的示踪剂,不会影响活力或功能
互动。初步研究表明使用 MPI 对小鼠 T 细胞生物分布进行非侵入性追踪,
SPION 标记的 T 细胞在小鼠模型中全身给药后到达实体瘤。拟议的
工作(目标 3)将验证使用 MPI 与使用流式细胞计数的 ACT T 细胞疗法的体内跟踪
细胞计数,并将使用 MPI 纵向评估肿瘤中 T 细胞积累的动态。拟议的
生物材料开发研究计划是通过 PI(SPION 和 MPI)的互补专业知识来实现的
物理学)和 Co-I(ACT T 细胞疗法),并使用最先进的仪器来表征 SPION
MPI 体外和体内性能。实现 5x102 T 细胞的目标灵敏度将提供以下数量级:
与其他全身定量成像相比,定量细胞追踪灵敏度大幅提高
技术,使 MPI 成为免疫成像工具箱中的强大工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos M Rinaldi-Ramos其他文献
Carlos M Rinaldi-Ramos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos M Rinaldi-Ramos', 18)}}的其他基金
NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
- 批准号:
10876754 - 财政年份:2023
- 资助金额:
$ 47.28万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10450938 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10365339 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10634620 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
- 批准号:
10527640 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
8954155 - 财政年份:2015
- 资助金额:
$ 47.28万 - 项目类别:
Modeling of the Magnetic Particle Imaging Signal Due to Magnetic Nanoparticles
磁性纳米粒子产生的磁性粒子成像信号的建模
- 批准号:
9024525 - 财政年份:2015
- 资助金额:
$ 47.28万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
9086452 - 财政年份:2015
- 资助金额:
$ 47.28万 - 项目类别:
相似国自然基金
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模拟增温对高寒草甸节肢动物“晨起”时间的影响及其生态学效应
- 批准号:32301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
- 批准号:
10876754 - 财政年份:2023
- 资助金额:
$ 47.28万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10365339 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Combating chronic neuroinflammatory disorders by targeting NAC1
通过靶向 NAC1 对抗慢性神经炎症性疾病
- 批准号:
10631164 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Combating chronic neuroinflammatory disorders by targeting NAC1
通过靶向 NAC1 对抗慢性神经炎症性疾病
- 批准号:
10527017 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别: