Regulation of Hepatic Gluconeogenesis by the CREB:TORC2 Pathway
CREB:TORC2 通路对肝糖异生的调节
基本信息
- 批准号:9017999
- 负责人:
- 金额:$ 73.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-07 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcuteAddressAgeAgonistBRD2 geneBeta CellBindingBlood GlucoseBrainBromodomainCREB1 geneCell NucleusCellsComplexConsensusCoupledCyclic AMPCyclic AMP-Dependent Protein KinasesDeacetylaseDeacetylationDefectEP300 geneEmbryoEquilibriumFOXO1A geneFamilyFamily memberFastingFibroblastsFutureGene ExpressionGene TargetingGenesGenetic TranscriptionGlucagonGluconeogenesisGlucoseGrantHepaticHepatocyteHistone DeacetylaseHistonesHormonesHourHyperglycemiaImmune SeraInsulinInsulin ResistanceIslets of LangerhansKineticsKnock-outKnockout MiceLeucine ZippersLiverLong-Term EffectsLoxP-flanked alleleMediatingMethylationMonitorMono-SMusMutant Strains MiceMutationNuclearPCAF genePathway interactionsPhosphorylationPhosphorylation SiteProcessProtein DephosphorylationProtein Kinase InhibitorsProteinsProteomicsRNA InterferenceReceptor SignalingRecruitment ActivityRegulationResistanceRoleSignal TransductionSkeletal MuscleStructure of beta Cell of isletTestingTissuesTransactivationTranscription CoactivatorTransferaseUbiquitinationUp-RegulationWorkattenuationbasecell typecofactorfasting glucosefeedingglucagon-like peptideglucose productionhepatic gluconeogenesishistone methylationimprovedin vivoinhibitor/antagonistinsightinsulin secretionknock-downmembermulticatalytic endopeptidase complexmutantoverexpressionpancreatic islet functionparalogous genepeptide hormoneprogramspromoterprotein kinase inhibitorresponsesalt-inducible kinasetranscription factorubiquitin-protein ligase
项目摘要
Under fasting conditions, increases in circulating glucagon stimulate hepatic glucose production via induction of the cAMP pathway. Conversely, increases in gut-derived glucagon-like peptide 1 (GLP1) during feeding enhance glucose clearance by promoting insulin release. The transcription factor CREB is thought to mediate long term effects of both peptide hormones, following its phosphorylation by PKA and association with CBP/P300. The transcriptional response to cAMP follows burst-attenuation kinetics; CREB activity peaks after 1 hour of stimulation, returning to baseline after 4-6 hours.
In addition to their effects on CREB phosphorylation, glucagon and GLP1 also increase CREB activity by stimulating its association with the cAMP Regulated Transcriptional Coactivators (CRTCs/TORCs), latent cytoplasmic CREB cofactors that translocate to the nucleus following their dephosphorylation in response to cAMP. CRTC1 is expressed only in brain, while CRTC2 and CRTC3 are co-expressed in most tissues. The extent to which CRTC2 and CRTC3 function on overlapping or distinct subsets of CREB target genes is unclear, however. In the previous grant period, we showed that the CREB/CRTC2 pathway contributes importantly to fasting glucose production; acute depletion of CRTC2 in liver substantially lowers blood glucose concentrations and gluconeogenic gene expression, while over-expression of wild-type and to a greater extent phosphorylation-defective CRTC2 increases gluconeogenesis.
By contrast with effects of acute hepatic CRTC2 knockdown, mice with a whole-body knockout of CRTC2 show only modest reductions in fasting glucose levels; and they develop an insulin secretion defect as they age. These results point to the involvement of additional CREB coactivators that compensate for loss of CRTC2 in liver, and they suggest that CRTC2 expression in pancreatic islets also modulates circulating glucose concentrations through its effects on insulin secretion. Supporting the latter, MafA, a beta cell transcription factor that is required for insulin secretion, is strongly upregulated by CREB and CRTC2.
Proposed studies during the upcoming grant period focus on the hypothesis that members of the CRTC family exert overlapping effects on CREB activity. The importance of a newly identified CREB interacting protein in potentiating CREB activity and compensating for loss of CRTC2 in CRTC2 mutant mice will be tested. Finally the role of a potent CREB inhibitor, which is upregulated in pancreatic islets under hyperglycemic conditions, in promoting resistance to Gs-coupled receptor signaling, will be evaluated.
Three aims are proposed; they extend the previous work by addressing the mechanisms by which the CREB pathway promotes gluconeogenesis in liver and facilitates insulin secretion from pancreatic islets.
In Aim 1, we will use mice with floxed alleles of CRTC2 and CRTC3 to evaluate the relative roles of these
coactivators in modulating hepatic gluconeogenesis and insulin secretion. We will generate mice with tissue specific knockouts of CRTC2 and CRTC3 in liver or pancreatic islets. Do CRTC2 and CRTC3 exert overlapping effects on gluconeogenic gene expression in liver? Do they promote insulin secretion by upregulating the leucine zipper factor MafA?
In Aim 2, we will test the role of BRD2-a bromodomain protein identified in a proteomic screen for CREB associated proteins- in stimulating expression of gluconeogenic genes. We will characterize domains in BRD2 and CREB that mediate this interaction; and the role of CREB acetylation in modulating the BRD2:CREB association will also be tested. We will evaluate whether inhibition of BRD2, through administration of a selective bromodomain inhibitor, improves glucose levels in the setting of insulin resistance.
In Aim 3, we will examine the mechanism by which CREB target gene expression in pancreatic islets is down-regulated in insulin resistance. In particular, we will investigate the role of Protein Kinase Inhibitor beta (PKIB) in interfering with GLP1 and other hormones, following its upregulation in response to hyperglycemia: PKIB knockout mice will be used to determine whether depletion of this inhibitor improves pancreatic islet function in the setting of insulin resistance.
Taken together, the proposed studies will provide new insight into mechanisms by which glucagon and GLP1 promote glucose balance through their effects on the CREB pathway in liver and pancreatic beta cells.
在禁食条件下,循环胰高血糖素的增加通过诱导cAMP途径刺激肝葡萄糖的产生。相反,喂养过程中肠道来源的胰高血糖素样肽1(GLP1)的增加通过促进胰岛素释放来增强葡萄糖清除率。转录因子CREB被认为是在PKA磷酸化并与CBP/P300相关的磷酸化之后,介导两种肽激素的长期影响。对营地的转录反应遵循爆发累积动力学;刺激1小时后,CREB活性达到峰值,4-6小时后返回基线。
除了对CREB磷酸化的影响外,胰高血糖素和GLP1还通过刺激其与cAMP调节的转录共激活剂(CRTC/TORC),潜在的细胞质CREB辅助因子的相关性来增加CREB活性,从而将其转移到核心后,从而响应camp的磷酸化。 CRTC1仅在大脑中表达,而CRTC2和CRTC3在大多数组织中共表达。但是,CRTC2和CRTC3在重叠或CREB靶基因的不同子集上起作用的程度尚不清楚。在上一个赠款期间,我们表明CREB/CRTC2途径对禁食葡萄糖产生重要贡献。 CRTC2在肝脏中的急性消耗基本上会降低血糖浓度和糖原性基因表达,而野生型的过表达和更大程度上的磷酸化缺陷CRTC2会增加糖异生。
与急性肝CRTC2敲低的影响相反,具有CRTC2全身敲除的小鼠仅显示空腹葡萄糖水平的适度降低。随着年龄的增长,他们会形成胰岛素分泌缺陷。这些结果表明,其他CREB共激活因子参与了肝脏中CRTC2损失的介绍,它们表明胰岛中的CRTC2表达也通过其对胰岛素分泌的影响来调节循环葡萄糖浓度。支持后者,MAFA是胰岛素分泌所需的β细胞转录因子,由CREB和CRTC2强烈上调。
在即将到来的赠款期间的拟议研究集中在CRTC家族成员对CREB活动产生重叠影响的假设。新鉴定的CREB相互作用蛋白在增强CREB活性并补偿CRTC2突变小鼠中CRTC2损失的重要性将进行测试。最后,将评估有效的CREB抑制剂的作用,该抑制剂将在高血糖条件下在胰岛上上调,在促进对GS耦合受体信号的抗性中的作用。
提出了三个目标;他们通过解决CREB途径促进肝脏中糖异生的机制来扩展先前的工作,并促进胰岛中胰岛素分泌。
在AIM 1中,我们将使用与CRTC2和CRTC3的Floxed等位基因的小鼠评估这些相对作用
调节肝糖异生和胰岛素分泌方面的共激活剂。我们将在肝脏或胰岛中生成具有CRTC2和CRTC3的组织特异性敲除小鼠。 CRTC2和CRTC3是否对肝脏中的糖生成基因表达产生重叠的影响?它们是否通过上调亮氨酸拉链因子MAFA来促进胰岛素分泌?
在AIM 2中,我们将测试在蛋白质组学筛选中鉴定出CREB相关蛋白质的BRD2-A溴结构域蛋白的作用 - 刺激糖原性基因的表达。我们将表征介导这种相互作用的BRD2和CREB中的域; CREB乙酰化在调节BRD2:CREB关联中的作用也将进行测试。我们将通过施用选择性溴化域抑制剂来评估BRD2的抑制是否可以改善胰岛素抵抗的葡萄糖水平。
在AIM 3中,我们将研究胰岛耐药性中胰岛胰岛中CREB靶基因表达的机制。特别是,我们将研究蛋白激酶抑制剂β(PKIB)在响应高血糖的上调(PKIB基因敲除小鼠)的上调后,将使用该抑制剂的耗竭是否会改善胰岛耐药的功能,以确定该抑制剂改善胰岛素耐药的功能。
综上所述,拟议的研究将提供有关胰高血糖素和GLP1通过对肝脏和胰腺β细胞CREB途径的影响来促进葡萄糖平衡机制的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARC R MONTMINY其他文献
MARC R MONTMINY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARC R MONTMINY', 18)}}的其他基金
Regulation of Hepatic Gluconeogenesis by the CREB:TORC2 Pathway
CREB:TORC2 通路对肝糖异生的调节
- 批准号:
10359198 - 财政年份:2019
- 资助金额:
$ 73.05万 - 项目类别:
Regulation of Hepatic Gluconeogenesis by the CREB:TORC2 Pathway
CREB:TORC2 通路对肝糖异生的调节
- 批准号:
8749897 - 财政年份:2014
- 资助金额:
$ 73.05万 - 项目类别:
Regulation of Hepatic Gluconeogenesis by the CREB:TORC2 Pathway
CREB:TORC2 通路对肝糖异生的调节
- 批准号:
8833274 - 财政年份:2014
- 资助金额:
$ 73.05万 - 项目类别:
Cross-talk between the circadian clock and the cAMP signaling pathway
生物钟和 cAMP 信号通路之间的串扰
- 批准号:
8087954 - 财政年份:2011
- 资助金额:
$ 73.05万 - 项目类别:
Cross-talk between the circadian clock and the cAMP signaling pathway
生物钟和 cAMP 信号通路之间的串扰
- 批准号:
8258301 - 财政年份:2011
- 资助金额:
$ 73.05万 - 项目类别:
Cross-talk between the circadian clock and the cAMP signaling pathway
生物钟和 cAMP 信号通路之间的串扰
- 批准号:
8449748 - 财政年份:2011
- 资助金额:
$ 73.05万 - 项目类别:
Cross-talk between the circadian clock and the cAMP signaling pathway
生物钟和 cAMP 信号通路之间的串扰
- 批准号:
8638961 - 财政年份:2011
- 资助金额:
$ 73.05万 - 项目类别:
REGULATION OF BETA CELL GENES BY GLUCOSE AND INCRETINS
葡萄糖和肠促胰素对 β 细胞基因的调节
- 批准号:
8171328 - 财政年份:2010
- 资助金额:
$ 73.05万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
HDAC3 as a therapeutic target for intracerebral hemorrhage
HDAC3作为脑出血的治疗靶点
- 批准号:
10701321 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10917559 - 财政年份:2023
- 资助金额:
$ 73.05万 - 项目类别: