Combining Machine Learning and Nanofluidic Technology for The Multiplexed Diagnosis of Pancreatic Adenocarcinoma
结合机器学习和纳流体技术进行胰腺癌的多重诊断
基本信息
- 批准号:10613226
- 负责人:
- 金额:$ 38.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBenchmarkingBenignBiological AssayBiological MarkersBlindedBloodBlood specimenCA-19-9 AntigenCancer EtiologyCell LineCessation of lifeClassificationClinicalDataData SetDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease ProgressionDistant MetastasisEarly DiagnosisElementsEndoscopic BiopsyEndoscopyEnvironmentEvaluationGoalsHourImageIndividualKRAS2 geneLesionLocalized DiseaseMachine LearningMagnetic Resonance ImagingMagnetismMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of pancreasMembrane ProteinsMessenger RNAMethodsMicroRNAsModelingMolecular ProfilingMonitorMutation DetectionNeoplasm MetastasisNucleic AcidsOperative Surgical ProceduresPancreasPancreatic AdenocarcinomaPancreatic DiseasesPancreatic Ductal AdenocarcinomaPancreatitisPatient-Focused OutcomesPatientsPerformancePhysiciansPlasmaPositron-Emission TomographyProteinsRNARNA ProbesResectableRoleSamplingSortingStagingStreamSurfaceTechnologyTestingTrainingTumor-DerivedTumor-associated macrophagesUnited StatesValidationVesicleWorkX-Ray Computed Tomographycell free DNAcell typeclinical diagnosticscohortdesigndetection limitdetection sensitivitydiagnostic signaturediagnostic valuedisorder controldrug efficacyefficacious treatmentextracellular vesiclesimprovedinnovationinstrumentationliquid biopsymachine learning classificationmachine learning classifiermanufacturabilitymicrofluidic technologymultimodalitynanofluidicnanoparticlenanoporenanoscaleneoplastic cellnext generationnoninvasive diagnosisnovel strategiesoperationphysical propertypredictive panelprognostic signatureprotein expressionscreeningstandard of caretreatment responsetumortumor DNA
项目摘要
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in
the United States with an overall 5-year survival of 9%. Diagnosis and staging continue to rely
on endoscopic biopsy and imaging, and as such most patients are diagnosed at an advanced
stage. Sufficiently sensitive and specific screening tests for early disease remain elusive.
Moreover, while curative-intent surgery is an option for patients whose disease is confined to
the pancreas, distinguishing patients with metastases who are unlikely to benefit from surgery,
remains challenging due to occult metastases not detectable by imaging. To address these
challenges, several blood-based liquid biopsy biomarkers have been developed but show low
sensitivity for detection of early-stage disease. We have recently shown that circulating tumor
derived extracellular vesicles(EVs) can be isolated from blood and their RNA cargo used to
diagnose early pancreatic cancer and stage disease. These findings suggest an opportunity to
improve patient outcomes through development of a non-invasive diagnostic for pancreatic
cancer. However, as has been well documented, EVs are highly heterogeneous in their
expression of protein surface markers and their nucleic acid and protein cargo, and originate
from multiple cell types in the tumor micro environment (TME) (e.g. tumor cells, tumor
associated macrophages). The ultimate goal of this proposal is to address a fundamental
technological unmet need in EV diagnostics, by further developing our new approach to EV
subpopulation isolation using magnetic nanopores, which combines the benefits of nano-scale
sorting with sufficiently fast flow rates (106x faster than typical nanofluidic approaches) to be
practical for clinical diagnostics. In this R33, we develop this approach into a multiplexed EV
assay that will allow multiple unique EV sub-populations - based on surface marker expression-
to be isolated and their RNA cargo profiled. Building on our prior work that demonstrated the
value of analyzing single EV-subpopulations, and improved sensitivity of a multi-analyte vs
single analyte test, we will develop a multi-analyte EV-based assay that algorithmically
combines tumor associated EV RNA from multiple circulating EV isolates from the TME, as well
as Circulating cell-free DNA (ccfDNA) concentration, circulating tumor DNA-based KRAS
mutation detection, and CA19-9 using machine learning.
胰腺导管腺癌 (PDAC) 是癌症相关死亡的第三大原因
美国的总体 5 年生存率为 9%。诊断和分期继续依赖
内窥镜活检和成像,因此大多数患者是在晚期诊断的
阶段。针对早期疾病的足够敏感和特异性的筛查测试仍然难以实现。
此外,虽然对于疾病仅限于以下疾病的患者来说,治愈性手术是一种选择
胰腺,区分不太可能从手术中受益的转移患者,
由于影像学无法检测到隐匿性转移,因此仍然具有挑战性。为了解决这些
挑战,已经开发了几种基于血液的液体活检生物标志物,但表现较低
检测早期疾病的敏感性。我们最近发现循环肿瘤
衍生的细胞外囊泡 (EV) 可以从血液中分离出来,其 RNA 货物可用于
诊断早期胰腺癌并分期疾病。这些发现表明有机会
通过开发胰腺非侵入性诊断方法改善患者治疗结果
癌症。然而,正如有充分证据表明的那样,电动汽车在其性能方面具有高度的异质性。
蛋白质表面标记及其核酸和蛋白质货物的表达,并起源
来自肿瘤微环境(TME)中的多种细胞类型(例如肿瘤细胞、肿瘤
相关巨噬细胞)。该提案的最终目标是解决一个根本问题
通过进一步开发我们的电动汽车新方法,解决电动汽车诊断中未满足的技术需求
使用磁性纳米孔进行亚群分离,结合了纳米级的优点
以足够快的流速(比典型纳米流体方法快 106 倍)进行分类
可用于临床诊断。在这款 R33 中,我们将这种方法开发成多路电动汽车
检测将允许多个独特的 EV 亚群 - 基于表面标记表达 -
进行分离并分析其 RNA 货物。以我们之前的工作为基础,展示了
分析单一 EV 亚群的价值,以及与多种分析物相比提高的灵敏度
单一分析物测试,我们将开发一种基于 EV 的多分析物检测,该检测通过算法
结合了来自 TME 的多种循环 EV 分离株的肿瘤相关 EV RNA,以及
作为循环游离 DNA (ccfDNA) 浓度、基于循环肿瘤 DNA 的 KRAS
使用机器学习进行突变检测和 CA19-9。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Carpenter其他文献
Erica Carpenter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erica Carpenter', 18)}}的其他基金
Real-time monitoring of circulating pancreatic tumor cells and clusters
实时监测循环胰腺肿瘤细胞和簇
- 批准号:
9512562 - 财政年份:2016
- 资助金额:
$ 38.83万 - 项目类别:
Real-time monitoring of circulating pancreatic tumor cells and clusters
实时监测循环胰腺肿瘤细胞和簇
- 批准号:
10219169 - 财政年份:2016
- 资助金额:
$ 38.83万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
Imaging and multi-omics analyses to identify molecular subtypes of distinct emphysema patterns
影像学和多组学分析可识别不同肺气肿模式的分子亚型
- 批准号:
10736162 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
Software for stent failure prevention using intravascular OCT images
使用血管内 OCT 图像预防支架失效的软件
- 批准号:
10685081 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
- 批准号:
10740943 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别: