Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
基本信息
- 批准号:10611385
- 负责人:
- 金额:$ 47.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdultAdverse effectsAnimal ModelAnti-Arrhythmia AgentsArrhythmiaBrugada syndromeCalciumCalcium ChannelCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCause of DeathCell Culture TechniquesCellsChromosome MappingCodon NucleotidesComputer SimulationCongenital AbnormalityDefectDeveloped CountriesDiseaseDisease modelEchocardiographyElectrocardiogramElectrophysiology (science)EngineeringFibrosisFoundationsFunctional disorderFutureGenesGeneticGenetic EngineeringGoalsHeartHeart DiseasesHeart failureHumanHuman EngineeringHuman bodyImpairmentIn SituIn VitroIonsKineticsLeftLoss of HeterozygosityMammalian CellMapsMeasurementMechanicsMediatingMembraneMethodsModelingMusMuscle ContractionMutateMutationMyocardial InfarctionMyocardial IschemiaMyocardiumNeonatalOpticsOrthologous GenePathologyPermeabilityPlayPotassium ChannelPredispositionPreparationPropertyRattusRegulationRoleShort QT syndromeSick Sinus SyndromeSite-Directed MutagenesisSliceSodiumSodium ChannelSpeedSyndromeSystemTestingTherapeuticTherapeutic EffectTissue ModelTissuesVariantVentricularViralViral VectorVirusWorkadeno-associated viral vectorbiophysical propertiescandidate identificationcardiac tissue engineeringextracellulargene therapyheart functionhemodynamicsimprovedin silicoin vitro Modelin vivoin vivo evaluationloss of function mutationmouse modelnoveloverexpressionpatch clamppharmacologicpreventrecombinant viral vectorsudden cardiac deathtraffickingtransgene expressionvoltage
项目摘要
Impaired cardiomyocyte excitability and contractile function represent important targets for preventing the
occurrence of sudden cardiac death and progression of heart failure. Growing mechanistic understanding of
cardiac pathologies and increasingly safe and effective methods to deliver viruses to human body make gene
therapies an attractive strategy for combatting various heart diseases. Specifically, the ability to genetically, in a
stable fashion, directly augment sodium or L-type calcium current in cardiomyocytes could directly enhance cell
excitability and contractility and counteract occurrence of electrical abnormalities in a variety of heart diseases.
However, cardiac Na+ or L-type Ca2+ channel genes are too large to be effectively delivered by therapeutic
viruses including adeno-associated viral (AAV) vectors. To address this challenge, we propose to develop a
novel AAV-based therapy that leverages engineering of much smaller prokaryotic voltage-gated sodium
(BacNav) and calcium (BacCav) channel genes. Our preliminary results show that genetically engineered BacNav
channels can improve cardiomyocyte excitability and action potential conduction in in vitro and in silico models
of rat and human fibrotic heart tissues. Furthermore, we demonstrate successful cardiomyocyte-specific AAV9
delivery of BacNav channels in healthy murine hearts without any adverse effects on cardiac electrophysiology
or contractile function. Building on these promising results, we propose to: 1) identify engineered BacNav variants
with specific mutations and trafficking motifs that maximize cardiomyocyte excitability and action potential speed
by utilizing in vitro cell culture, ex vivo heart slice preparations, and computer simulations and 2) engineer new
variants of BacCav, which alone or in combination with BacNav can augment not only cardiomyocyte excitability
but also contractile strength, which will be studied using engineered 3D heart tissue models in vitro. Finally, we
will exploit murine models of impaired cardiac tissue excitability (genetic loss of cardiac Na+ current (SCN5A+/-
)) or contractile dysfunction (myocardial infarction) to explore which of the identified BacNav and BacCav genes
delivered by AAV vector will induce optimal long-term therapeutic effects in vivo. If successful, these studies will
create a foundation for the future mechanistic studies of prokaryotic channel regulation in mammalian
cardiomyocytes and will guide testing of the engineered BacNav and BacCav channel therapies in large animal
models of heart disease.
心肌细胞兴奋性和收缩功能受损是预防心肌细胞损伤的重要目标。
心源性猝死的发生和心力衰竭的进展。不断加深对机制的理解
心脏病和日益安全有效的将病毒输送到人体的方法使基因
疗法是对抗各种心脏病的有吸引力的策略。具体来说,从基因角度来说,能力
稳定的方式,直接增强心肌细胞内钠或L型钙电流,可直接增强细胞
兴奋性和收缩性并抵消各种心脏病中电异常的发生。
然而,心脏 Na+ 或 L 型 Ca2+ 通道基因太大,无法通过治疗有效传递
病毒,包括腺相关病毒(AAV)载体。为了应对这一挑战,我们建议开发一个
基于 AAV 的新型疗法,利用更小的原核电压门控钠工程
(BacNav) 和钙 (BacCav) 通道基因。我们的初步结果表明,基因工程 BacNav
通道可以在体外和计算机模型中改善心肌细胞的兴奋性和动作电位传导
大鼠和人类纤维化心脏组织。此外,我们成功证明了心肌细胞特异性 AAV9
在健康小鼠心脏中传递 BacNav 通道,不会对心脏电生理产生任何不利影响
或收缩功能。基于这些有希望的结果,我们建议:1)识别工程 BacNav 变体
具有特定的突变和运输基序,可最大限度地提高心肌细胞的兴奋性和动作电位速度
通过利用体外细胞培养、离体心脏切片制备和计算机模拟,2) 设计新的
BacCav 的变体,单独或与 BacNav 组合不仅可以增强心肌细胞的兴奋性
还有收缩强度,将使用工程 3D 心脏组织模型进行体外研究。最后,我们
将利用心脏组织兴奋性受损的小鼠模型(心脏Na+电流的遗传损失(SCN5A+/-
)) 或收缩功能障碍(心肌梗死),以探索已识别的 BacNav 和 BacCav 基因中的哪一个
由AAV载体递送的药物将在体内诱导最佳的长期治疗效果。如果成功的话,这些研究将
为未来哺乳动物原核通道调节机制研究奠定基础
心肌细胞,并将指导大型动物中工程化 BacNav 和 BacCav 通道疗法的测试
心脏病模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nenad Bursac其他文献
Nenad Bursac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nenad Bursac', 18)}}的其他基金
Engineering a Human Skeletal Muscle Tissue Model of LGMD2B
设计 LGMD2B 的人体骨骼肌组织模型
- 批准号:
10719721 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10392121 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
- 批准号:
10467794 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
- 批准号:
10616611 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
10242833 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
9810917 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
10001507 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
10477016 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Muscle-macrophage constructs for skeletal muscle repair
用于骨骼肌修复的肌肉巨噬细胞构建体
- 批准号:
9753935 - 财政年份:2016
- 资助金额:
$ 47.75万 - 项目类别:
In Vitro and In Situ Engineering of Fibroblasts for Cardiac Repair
用于心脏修复的成纤维细胞的体外和原位工程
- 批准号:
9276122 - 财政年份:2016
- 资助金额:
$ 47.75万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
ENABLING SUBMILLISECOND-TIMESCALE TWO-PHOTON RECORDING OF VOLTAGE DYNAMICS IN THREE DIMENSIONS IN VIVO
实现体内三维电压动态的亚毫秒级双光子记录
- 批准号:
10739579 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Mechanisms of neural compensation in the retina and dysfunction in congenital stationary night blindness
先天性静止性夜盲症视网膜神经代偿机制及功能障碍
- 批准号:
10678730 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别: