Watching Conformational Rearrangements in Poliovirus RNA-Dependent RNA Polymerase
观察脊髓灰质炎病毒 RNA 依赖性 RNA 聚合酶的构象重排
基本信息
- 批准号:9098572
- 负责人:
- 金额:$ 37.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAmino AcidsAntiviral AgentsApplications GrantsAttenuatedAttenuated Live Virus VaccineBacteriophagesBase PairingBindingBioavailableBiologyCatalysisClinical TrialsDNA-Directed DNA PolymeraseDNA-Directed RNA PolymeraseDevelopmentDiphosphatesEbola virusEnzymatic BiochemistryEnzymesEquilibriumExhibitsFoundationsGenomeGrantHealthHepatitis CHepatitis C virusHumanHuman poliovirusKineticsLaboratoriesLeadLinkMolecularMolecular ConformationMonitorMotionMutationNMR SpectroscopyNatureNuclear Magnetic ResonanceNucleic AcidsNucleosidesNucleotidesPathogenesisPhenotypePolymerasePositioning AttributeProcessProteinsPublicationsRNARNA VirusesRNA-Directed RNA PolymeraseReactionResearch PersonnelRiboseSiteStructureSystemTestingTherapeuticThermodynamicsVaccinesViralVirulenceVirusWorkX-Ray Crystallographyanti-hepatitis Cbasedesignmeetingsmembermillisecondmutantnovelnovel vaccinesnucleoside analognucleoside triphosphatepathogenprototyperesistance mechanismsmall moleculeviral RNA
项目摘要
DESCRIPTION (provided by applicant): The RNA genomes of important human pathogens such as poliovirus, hepatitis C and ebola virus are replicated by virally encoded RNA-dependent RNA polymerases (RdRp), an established anti-viral target. The molecular mechanisms of RdRp function will only be understood once we have both characterized its accessible structural states and delineated the transitions between these states as RdRp progresses through its catalytic cycle. This information would be critical for predicting fidelity-altering mutations that alter thi process, and/or for designing small molecule modulators of RdRp function that would interfere with the structural transitions. Crystal structures, by themselves, have been unable to capture the full range of structural rearrangements necessary for RdRp function, and give no information about the timescale of the conformational fluctuations. For example, active-site remote mutations that change RdRp fidelity and virus biology, do not lead to substantial structural differences, but rather, they change RdRp protein fluctuations over multiple timescales. In this grant application, we propose to use solution-state nuclear magnetic resonance (NMR) to "watch" the conformational rearrangements in an archetypal RdRp (in our case, from poliovirus) throughout its nucleotide addition cycle, contrast these conformational dynamics between wild-type and low/high fidelity-mutant RdRps, and delineate the molecular mechanisms of a novel class of nucleoside analogs, which include members under clinical trials. We predict that the fidelity-mutations and the nature of the incoming nucleotide ('correct' or 'incorrect' Watson-Crick
base-pair) will change the kinetics and/or thermodynamics of structural rearrangements critical for RdRp function. We also propose that the fidelity-altering, remote-site mutations exert their effects through a long-range, amino acid network. We will delineate this network through kinetic and NMR studies of selected mutants, including mutants derived from the Sabin 1 vaccine strain (i.e. a clinically-used, orally bioavailable vaccine strain for poliovirus). We predict that RdRp mutations contribute to the Sabin attenuated phenotype through altering RdRp fidelity. Understanding the interactions for coordinating the structural rearrangements in RdRp will allow us to predict amino acid changes that interfere with these motions and alter polymerase function. Such mutations in RdRp would be predicted to change polymerase fidelity, and therefore may serve as the basis of novel vaccine strains. Small molecules may also be used to perturb the structural rearrangements in RdRps; our studies will serve as a basis for illuminating the poorly understood mechanisms of actions for these compounds. Structure and dynamics are highly conserved among RdRps, so these concepts will be applicable to RNA viruses in general.
描述(由申请人提供):重要人类病原体(例如脊髓灰质炎病毒、丙型肝炎和埃博拉病毒)的 RNA 基因组通过病毒编码的 RNA 依赖性 RNA 聚合酶(RdRp)进行复制,RdRp 是一种已确定的抗病毒靶点。只有当我们表征了 RdRp 的可接近的结构状态并描述了 RdRp 在其催化循环中进展时这些状态之间的转变时,我们才能理解 RdRp 功能的分子机制。该信息对于预测改变该过程的保真度改变突变和/或设计干扰结构转变的 RdRp 功能小分子调节剂至关重要。晶体结构本身无法捕获 RdRp 功能所需的全部结构重排,并且无法提供有关构象波动时间尺度的信息。例如,改变 RdRp 保真度和病毒生物学的活性位点远程突变不会导致实质性的结构差异,而是会改变 RdRp 蛋白在多个时间尺度上的波动。在这项拨款申请中,我们建议使用溶液态核磁共振(NMR)来“观察”原型 RdRp(在我们的例子中,来自脊髓灰质炎病毒)在整个核苷酸添加周期中的构象重排,对比野生型 RdRp 和野生型 RdRp 之间的构象动力学。类型和低/高保真突变 RdRps,并描述一类新型核苷类似物的分子机制,其中包括正在进行临床试验的成员。我们预测保真度突变和传入核苷酸的性质(“正确”或“不正确”Watson-Crick
碱基对)将改变对 RdRp 功能至关重要的结构重排的动力学和/或热力学。我们还提出,改变保真度的远程位点突变通过长程氨基酸网络发挥作用。我们将通过对选定突变体的动力学和核磁共振研究来描绘这个网络,包括来自 Sabin 1 疫苗株(即临床使用的、口服生物可利用的脊髓灰质炎病毒疫苗株)的突变体。我们预测 RdRp 突变通过改变 RdRp 保真度导致 Sabin 减弱表型。了解协调 RdRp 结构重排的相互作用将使我们能够预测干扰这些运动并改变聚合酶功能的氨基酸变化。 RdRp 中的此类突变预计会改变聚合酶保真度,因此可以作为新型疫苗株的基础。小分子也可用于扰乱 RdRps 中的结构重排;我们的研究将作为阐明这些化合物鲜为人知的作用机制的基础。 RdRps 的结构和动力学高度保守,因此这些概念一般适用于 RNA 病毒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Douglas Boehr其他文献
David Douglas Boehr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Douglas Boehr', 18)}}的其他基金
Watching conformational rearrangements in picornavirus replication proteins
观察小核糖核酸病毒复制蛋白的构象重排
- 批准号:
10461745 - 财政年份:2014
- 资助金额:
$ 37.1万 - 项目类别:
Watching conformational rearrangements in picornavirus replication proteins
观察小核糖核酸病毒复制蛋白的构象重排
- 批准号:
10663356 - 财政年份:2014
- 资助金额:
$ 37.1万 - 项目类别:
Watching conformational rearrangements in picornavirus replication proteins
观察小核糖核酸病毒复制蛋白的构象重排
- 批准号:
10209169 - 财政年份:2014
- 资助金额:
$ 37.1万 - 项目类别:
Watching Conformational Rearrangements in Poliovirus RNA-Dependent RNA Polymerase
观察脊髓灰质炎病毒 RNA 依赖性 RNA 聚合酶的构象重排
- 批准号:
8631819 - 财政年份:2014
- 资助金额:
$ 37.1万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 37.1万 - 项目类别:
Accelerated development of advanced leads against SARS-CoV-2 and other pandemic viruses
加速开发针对 SARS-CoV-2 和其他大流行病毒的先进先导药物
- 批准号:
10513922 - 财政年份:2022
- 资助金额:
$ 37.1万 - 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
- 批准号:
10542661 - 财政年份:2022
- 资助金额:
$ 37.1万 - 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
- 批准号:
10386378 - 财政年份:2022
- 资助金额:
$ 37.1万 - 项目类别:
Defining the Biochemical Function and Therapeutic Utility of Unique PARP14 and PARP15 ADP-Ribosylation Sites
定义独特的 PARP14 和 PARP15 ADP-核糖基化位点的生化功能和治疗效用
- 批准号:
10046261 - 财政年份:2020
- 资助金额:
$ 37.1万 - 项目类别: