Watching conformational rearrangements in picornavirus replication proteins
观察小核糖核酸病毒复制蛋白的构象重排
基本信息
- 批准号:10209169
- 负责人:
- 金额:$ 38.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:1-Phosphatidylinositol 4-Kinase3-DimensionalActive SitesAffinityAmino Acid SubstitutionAntiviral AgentsBehaviorBindingBinding ProteinsBiogenesisBiological AssayBiological ModelsBiological ProcessBiophysicsCapsid ProteinsCellsComplementCoronavirusCrystallizationDevelopmentDrug TargetingElementsEnterovirusEnterovirus 68EnvironmentEnzymesEventFamily PicornaviridaeFundingGenomeGrantHeartHumanHuman poliovirusImmune responseLeadLife Cycle StagesLipid BindingLipidsMembraneMembrane ProteinsMolecular ConformationMotionMutagenesisNMR SpectroscopyNucleotidesOrganellesPeptide HydrolasesPeptidesPhosphatidylinositolsPlayPolymerasePolyproteinsProcessProductionProtein ConformationProteinsProteolysisProteolytic ProcessingProteomeRNARNA BindingRNA VirusesRNA replicationRNA-Directed RNA PolymeraseReplication-Associated ProcessRhinovirusRibonucleotidesRoentgen RaysRoleSamplingSpecificityStructureSurfaceSystemThermodynamicsTranslation ProcessViralViral ProteinsVirusVirus DiseasesVirus InhibitorsVirus ReplicationWorkattenuationbaseemerging pathogenflexibilityinhibitor/antagonistinsightnanosecondnovelpathogenic virusphosphodiesterprotein functionvaccine developmentviral RNA
项目摘要
Project Summary
Some of the most important new and (re)emerging pathogens are positive-strand RNA viruses,
including coronavirus and picornaviruses Enterovirus D68, Enterovirus A71 and even poliovirus.
These viruses can directly use their RNA genome to guide the synthesis of a large polyprotein, which
must then be proteolyzed into its component parts, including the capsid proteins and enzymes
important for genome replication and encapsidation. Virus RNA genomes are rather small, and so
these viruses have evolved strategies to essentially expand their functional proteomes. For example,
the picornavirus 3C protein is a multi-functional protein that has protease activity, binds RNA control
sequences important for coordinating replication and translation processes, and binds
phosphoinositide lipids found in virus “replication organelles”, which act to protect the virus from host
cell defenses. All of these activities are encoded within its small 20 kDa structure. Another strategy to
expand functional protein content is for proteolytic precursors to have different functions than their
fully processed counterparts. For example, 3C is also found as part of the 3CD protein, but the 3CD
protein has different protease specificity, and different RNA and lipid binding affinities. The 3CD
protein also has a 3D domain; the 3D protein is the RNA-dependent RNA polymerase but 3CD does
not possess polymerase activity. By itself, 3CD also upregulates phosphoinositide lipid production
and induces membrane proliferation, events important for replication organelle biogenesis. How the
different and emergent functions of 3CD arise is poorly understood; X-ray crystal structures indicate
that 3CD is merely a composite of the 3C and 3D proteins joined together by a small flexible linker.
We propose that structural dynamics, that is, the ability to sample multiple structural conformations, is
the missing ingredient in understanding virus protein function. We propose that 3C fluctuates among
many conformations, providing 3C the ability to access and coordinate its many functions, and we
propose that 3CD fluctuates into different conformations, providing it with alternative functions. These
dynamic excursions can be further modified by interactions with RNA, lipids and protein binding
partners to coordinate virus protein function. We will evaluate these protein structural dynamics
through solution-state nuclear magnetic resonance spectroscopy, which provide atomic-level detail of
protein motions from the picosecond to second timescales, and complement these studies with
mutagenesis studies, functional assays and cell-based approaches to better understand the roles of
protein structural dynamics in the virus life cycle. The completed work will provide new opportunities
for rational anti-viral strategies, for example, by finding molecules that bind to alternative protein
conformations and/or disrupt functionally-important motions, as already validated for 3D.
项目概要
一些最重要的新的和(重新)出现的病原体是正链 RNA 病毒,
包括冠状病毒和小核糖核酸病毒肠道病毒 D68、肠道病毒 A71 甚至脊髓灰质炎病毒。
这些病毒可以利用它们的RNA基因组直接指导大型多蛋白的合成,
然后必须被蛋白水解成其组成部分,包括衣壳蛋白和酶
对于基因组复制和衣壳化很重要 病毒 RNA 基因组相当小,因此。
这些病毒已经进化出本质上扩展其功能蛋白质组的策略,例如,
小核糖核酸病毒 3C 蛋白是一种多功能蛋白,具有蛋白酶活性,结合 RNA 控制
协调复制和翻译过程的重要序列,并结合
病毒“复制细胞器”中发现的磷酸肌醇脂质,可保护病毒免受宿主侵害
所有这些活性都编码在其 20 kDa 的小结构中。
扩大功能蛋白含量是为了使蛋白水解前体具有与其自身不同的功能
例如,3C 也被发现是 3CD 蛋白的一部分,但 3CD 是完全加工的。
3CD 蛋白具有不同的蛋白酶特异性以及不同的 RNA 和脂质结合亲和力。
蛋白质也有 3D 结构域;3D 蛋白质是 RNA 依赖性 RNA 聚合酶,但 3CD 却有
3CD 本身不具有聚合酶活性,也可上调磷酸肌醇脂质的产生。
并诱导膜增殖,这是复制细胞器生物发生的重要事件。
X 射线晶体结构表明 3CD 的不同和新出现的功能尚不清楚;
3CD 只是 3C 和 3D 蛋白质通过一个小的柔性接头连接在一起的复合物。
我们认为结构动力学,即对多种结构构象进行采样的能力,是
我们认为 3C 是理解病毒蛋白功能中缺失的成分。
许多构象,为 3C 提供了访问和协调其许多功能的能力,我们
提出 3CD 波动成不同的构象,为其提供替代功能。
动态偏移可以通过与 RNA、脂质和蛋白质结合的相互作用来进一步修改
我们将评估这些蛋白质的结构动力学。
通过溶液态核磁共振波谱,提供原子级细节
从皮秒到秒时间尺度的蛋白质运动,并补充这些研究
诱变研究、功能测定和基于细胞的方法,以更好地了解
病毒生命周期中的蛋白质结构动力学的完成工作将提供新的机遇。
合理的抗病毒策略,例如,通过寻找与替代蛋白质结合的分子
构象和/或破坏功能上重要的运动,正如已针对 3D 进行验证的那样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Douglas Boehr其他文献
David Douglas Boehr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Douglas Boehr', 18)}}的其他基金
Watching conformational rearrangements in picornavirus replication proteins
观察小核糖核酸病毒复制蛋白的构象重排
- 批准号:
10461745 - 财政年份:2014
- 资助金额:
$ 38.02万 - 项目类别:
Watching conformational rearrangements in picornavirus replication proteins
观察小核糖核酸病毒复制蛋白的构象重排
- 批准号:
10663356 - 财政年份:2014
- 资助金额:
$ 38.02万 - 项目类别:
Watching Conformational Rearrangements in Poliovirus RNA-Dependent RNA Polymerase
观察脊髓灰质炎病毒 RNA 依赖性 RNA 聚合酶的构象重排
- 批准号:
8631819 - 财政年份:2014
- 资助金额:
$ 38.02万 - 项目类别:
Watching Conformational Rearrangements in Poliovirus RNA-Dependent RNA Polymerase
观察脊髓灰质炎病毒 RNA 依赖性 RNA 聚合酶的构象重排
- 批准号:
9098572 - 财政年份:2014
- 资助金额:
$ 38.02万 - 项目类别:
相似国自然基金
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁性二维Fe3GeTe2材料的液相剥离及其超宽带光电探测性能研究
- 批准号:52301299
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
- 批准号:82300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
- 批准号:
10606798 - 财政年份:2023
- 资助金额:
$ 38.02万 - 项目类别:
Exploring herpesvirus exonucleases as potential antiviral targets
探索疱疹病毒核酸外切酶作为潜在的抗病毒靶点
- 批准号:
10825475 - 财政年份:2023
- 资助金额:
$ 38.02万 - 项目类别:
Identification and characterization of chemical probes for interrogation of the NEK family of kinases in cancer
用于研究癌症中 NEK 激酶家族的化学探针的鉴定和表征
- 批准号:
10503430 - 财政年份:2022
- 资助金额:
$ 38.02万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10521596 - 财政年份:2022
- 资助金额:
$ 38.02万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10662534 - 财政年份:2022
- 资助金额:
$ 38.02万 - 项目类别: