Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
基本信息
- 批准号:10606592
- 负责人:
- 金额:$ 43.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-03 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAnisotropyArchitectureAutologousBiocompatible MaterialsBiological ProcessBiophysicsBlood VesselsBone InjuryBone MarrowBone RegenerationCalvariaClinicalCollagenComplexComplicationCongenital AbnormalityDataDefectDepositionDoseEndothelial CellsFailureFamilyGlycoproteinsGoldHistologicImplantIn VitroInvadedMalignant NeoplasmsMechanicsMesenchymal Stem CellsMethodsModelingNatural regenerationNatureOperative Surgical ProceduresOryctolagus cuniculusOsteoclastsOsteogenesisPerformancePhenotypePolymersPopulationPorosityPrintingProcessProductionProliferatingPropertyReceptor SignalingReconstructive Surgical ProceduresResearchShapesSignal TransductionStructureTechnologyTimeTissue EngineeringTraumaTumor necrosis factor receptor 11bVascular remodelingWorkbonebone morphogenetic protein receptorscollagen scaffoldcostcraniofacialcraniofacial bonecraniumdefined contributiondesignhealingimprovedin vivoin vivo regenerationinhibitorinnovationmechanical propertiesmechanotransductionmillimetermineralizationmorphogensosteogenicosteoprogenitor cellpre-clinicalprocess improvementprototypereconstructionrecruitregeneration potentialregenerativeregenerative therapyrepairedsample fixationscaffoldstemstem cell expansionstem cellsstroke therapy
项目摘要
ABSTRACT
Defects in craniofacial bones of the skull occur congenitally, after high-energy impacts, and during the course of
treatment for stroke and cancer. Autologous bone or alloplastic implants are the current gold-standards for
surgical reconstruction. However, limited quantities and time-intensive intraoperative fitting of autologous bone,
the non-regenerative nature of alloplastic implants, and surgical challenges that stem from irregular defect
margins and the quality of the surrounding bone all contribute to poor healing and high complication rates. A
biomaterial that could be shaped precisely and quickly like an alloplastic implant but that works in a regenerative
fashion like autologous bone would be transformative for craniofacial reconstruction. The objective of this
proposal is to potentiate regeneration of the structure, composition, and mechanical properties of craniofacial
bone using an innovative scaffold-mesh composite biomaterial. We have generated extensive proof-of-principle
data for a surgically-practical composite biomaterial for craniofacial bone regeneration. Our core technology is a
porous mineralized collagen scaffold to expand MSCs in vivo. We have identified microstructural features of this
material to activate mechanotransduction and BMP receptor signaling to accelerate MSC osteogenicity and
secretion of osteoprotegerin (OPG), a soluble glycoprotein and endogenous inhibitor of osteoclast activity. As a
result, this material increases osteogenicity and transiently inhibits osteoclast activity to accelerate regenerative
healing of craniofacial bone defects osteogenic supplements or exogenously-seeded stem cells. We have
independently developed a millimeter-scale polymeric mesh that can be integrated into the scaffold, à la rebar
in concrete, to form a modular composite that can be shaped intraoperatively to conformally fit irregular defects.
Excitingly, prototype scaffold-mesh composites generated using a mesh printed from an advanced Hyperelastic
Bone® material increases MSC OPG secretion. These findings suggest the exciting possibility to co-optimize
scaffold microstructural properties as well as the composition and architecture of the integrated polymer mesh
to both passively aid surgical-practicality and actively accelerate regenerative healing. Our central hypothesis is
that a multi-scale scaffold-mesh composite will accelerate MSC recruitment and retention, increase osteogenesis
while inhibiting osteoclast activity, and facilitate vascular remodeling to improve regeneration. To do this we will
first define the contribution of scaffold anisotropy on the recruitment and activity of osteoprogenitors and
endothelial cells (Aim 1). We will establish topology parameters of a scalable mesh to aid surgical practicality
and regenerative potential (Aim 2). Lastly, we will demonstrate in vivo efficacy of a scaffold-mesh composite in
a confined calvarial defect model (Aim 3). Our unified effort to develop craniofacial regenerative technologies
will generate significant preclinical data to support an FDA IDE application essential for accelerating this
technology towards clinical use as a material-only regenerative therapy for craniofacial bone injuries.
抽象的
颅骨的颅面骨缺陷是先天性的、高能量冲击后以及在生长过程中发生的。
自体骨或异体植入物是目前治疗中风和癌症的黄金标准。
然而,自体骨的手术重建数量有限且耗时。
同种异体植入物的非再生性质以及不规则缺损引起的手术挑战
边缘和周围骨骼的质量都会导致愈合不良和并发症发生率高。
生物材料可以像异体植入物一样精确快速地成型,但可以再生
像自体骨这样的时尚将为颅面重建带来变革。
建议是增强颅面结构、成分和机械性能的再生
我们已经进行了广泛的原理验证。
用于颅面骨再生的手术实用复合生物材料的数据。
用于在体内扩增 MSC 的多孔矿化胶原支架我们已经确定了其微观结构特征。
激活机械转导和 BMP 受体信号传导以加速 MSC 成骨性的材料
骨保护素(OPG)的分泌,一种可溶性糖蛋白和破骨细胞活性的内源性抑制剂。
结果,这种材料增加了成骨性并暂时抑制破骨细胞活性以加速再生
修复颅面骨缺损我们有成骨补充剂或外源种子干细胞。
独立开发了毫米级聚合物网,可以集成到脚手架中,就像钢筋一样
在混凝土中,形成模块化复合材料,可以在术中成形以保形地适应不规则缺陷。
令人兴奋的是,使用先进的超弹性材料打印的网格生成了原型支架网格复合材料
Bone® 材料可增加 MSC OPG 分泌。这些发现表明了共同优化的令人兴奋的可能性。
支架微观结构特性以及集成聚合物网的组成和结构
既被动地帮助手术实用性,又主动地加速再生愈合。
多尺度支架网复合材料将加速 MSC 的招募和保留,增加成骨
同时抑制破骨细胞活性,并促进血管重塑以改善再生。
首先定义支架各向异性对骨祖细胞的募集和活性的贡献,
我们将建立可扩展网格的拓扑参数以帮助手术实用性。
最后,我们将证明支架-网状复合材料的体内功效。
有限的颅骨缺损模型(目标 3)。
将生成重要的临床前数据来支持 FDA IDE 应用程序,这对于加速这一过程至关重要
技术作为一种纯材料再生疗法用于临床颅面骨损伤。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of bacterial attachment on mineralized collagen scaffolds and addition of manuka honey to increase mesenchymal stem cell osteogenesis.
评估矿化胶原蛋白支架上的细菌附着以及添加麦卢卡蜂蜜以增加间充质干细胞成骨作用。
- DOI:10.1016/j.biomaterials.2023.122015
- 发表时间:2023-01-01
- 期刊:
- 影响因子:14
- 作者:Marley J. Dewey;A. Collins;Alecz;ria S. Tiffany;ria;Victoria R. Barnhouse;Crislyn Lu;V. Kolliopoulos;I. Mutreja;N. Hickok;B. Harley
- 通讯作者:B. Harley
Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation.
矿化胶原支架的糖胺聚糖含量可促进间充质干细胞分泌调节血管生成和单核细胞分化的因子。
- DOI:
- 发表时间:2021-08
- 期刊:
- 影响因子:3.4
- 作者:Dewey, Marley J;Kolliopoulos, Vasiliki;Ngo, Mai T;Harley, Brendan A C
- 通讯作者:Harley, Brendan A C
Amnion and chorion matrix maintain hMSC osteogenic response and enhance immunomodulatory and angiogenic potential in a mineralized collagen scaffold.
羊膜和绒毛膜基质维持 hMSC 成骨反应,并增强矿化胶原支架中的免疫调节和血管生成潜力。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kolliopoulos, Vasiliki;Dewey, Marley J;Polanek, Maxwell;Xu, Hui;Harley, Brendan A C
- 通讯作者:Harley, Brendan A C
Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology.
成长的烦恼:需要工程平台来研究生长板生物学。
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:10
- 作者:Tiffany, Aleczandria S;Harley, Brendan A C
- 通讯作者:Harley, Brendan A C
Legal Penalties for Physicians Providing Gender-Affirming Care.
对提供性别肯定护理的医生的法律处罚。
- DOI:
- 发表时间:2023-06-06
- 期刊:
- 影响因子:0
- 作者:Mallory, Christy;Chin, Madeline G;Lee, Justine C
- 通讯作者:Lee, Justine C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Three‐dimensional tissue cytometer based on high‐speed multiphoton microscopy
基于高速多光子显微镜的三维组织细胞仪
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:3.7
- 作者:
Ki H. Kim;T. Ragan;M. Previte;K. Bahlmann;Brendan A. Harley;Dominika M. Wiktor;M. Stitt;Carrie A. Hendricks;Karen H Almeida;B. Engelward;P. So - 通讯作者:
P. So
Enhanced live cell imagingviaphotonic crystal enhanced fluorescence microscopy
- DOI:
10.1039/c4an01508h - 发表时间:
2014-09 - 期刊:
- 影响因子:4.2
- 作者:
Weili Chen;Kenneth D. Long;Hojeong Yu;Yafang Tan;Ji Sun Choi;Brendan A. Harley;Brian T. Cunningham - 通讯作者:
Brian T. Cunningham
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
- 批准号:
10413538 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10495364 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 43.23万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别: