Structural Biology and Biophysics of Alpha-Synuclein Fibrils by Solid-State NMR
通过固态核磁共振研究 α-突触核蛋白原纤维的结构生物学和生物物理学
基本信息
- 批准号:10605819
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAmyloidBindingBinding SitesBiophysicsChadCharacteristicsChemicalsCollaborationsCommunitiesComplexCryo-electron tomographyCryoelectron MicroscopyDataDevelopmentDiagnosisDiagnosticDiseaseEnvironmentEtiologyExhibitsFacultyFellowshipFluorescent DyesFormulationFutureGrantImaging ligandsIn VitroInfrastructureInstitutionInternationalJointsLabelLansoprazoleLengthLewy Body DementiaLigand BindingLigandsLocationMagnetic ResonanceMeasuresMembrane ProteinsMentorsMethodologyMethodsMolecular ConformationMotorMultiple System AtrophyNMR SpectroscopyNational Research Service AwardsNeurodegenerative DisordersParkinson DiseaseParkinson&aposs DementiaPathogenicityPathologyPathway interactionsPatientsPersonsPhenotypePhysiologicalPittsburgh Compound-BPolymorphPositron-Emission TomographyPostdoctoral FellowPreparationPropertyProtein DynamicsPublic HealthPublicationsRelaxationResearchResidual stateResolutionRiskSiteSpectrum AnalysisStructureTechniquesTechnologyTemperatureTestingTherapeuticTissuesTrainingUniversitiesVariantVertebral columnWaterWidthWisconsinaggregation pathwayalpha synucleinclinical applicationcognitive functiondiagnostic tooldisease phenotypeexperienceexperimental studygraduate studentimprovedin vivoinsightmeetingsmembermolecular dynamicsnovelnovel strategiespreferenceprotein aggregationprotein structuresmall moleculesolid state nuclear magnetic resonancestructural biologysynucleinopathytooltool development
项目摘要
ABSTRACT
Synucleinopathies are a major public health risk, with millions of people each year affected by Parkinson disease,
Parkinson disease with dementia (PDD), Lewy Body dementia, and multiple system atrophy. These diseases
impact both motor and cognitive function, for which there are no known cures and limited therapeutic options. It
is therefore vital to determine the disease etiology, which is hypothesized to arise from the misfolding and
aggregation of the protein α-synuclein into fibrils. The in vivo structural forms of these pathogenic fibrils will help
to understand mechanisms of misfolding and aid in the development of imaging ligands with higher structure-
specific binding. I will use solid state NMR (SSNMR) in combination with cryo-EM/ET to determine the structures
of patient derived in vivo PDD fibrils. I will then investigate how in vivo fibril quaternary structure governs the
stability and dynamics of mature diseased state fibrils and its effects on the aggregation pathway of α-synuclein
fibrils. I will also investigate the interactions of imaging ligands to these fibrils to determine the structural motifs
these compounds bind to by comparing binding site structure between in vitro and in vivo fibril preparations.
Training plan: I have a considerable amount of research experience with SSNMR of membrane proteins, and I
will add training in SSNMR methods required for structure determination of fibrils structures using novel
approaches combining simulated annealing and molecular dynamics with cryo-electron microscopy (cryo-EM),
cryo-electron tomography (cryo-ET) and SSNMR data. The National Magnetic Resonance Facility at Madison
(NMRFAM) provides a world-leading environment for training with access to high field SSNMR spectrometers
(600 to 900 MHz) and an ultra-high field (1.1 GHz) SSNMR spectrometer arriving in 2023. The infrastructure
here will allow me to make new discoveries to both structure and dynamics of diseased fibrils and their
interactions with imaging ligands. Furthermore, I will gain training in cryo-ET to obtain complementary data such
as fibril width, twist, mass-per-unit length, and utilize cryo-EM to solve structures jointly with SSNMR to atomic
resolution. These findings will be disseminated to the larger scientific community via publications and talks given
at interdisciplinary meetings. My training will take place under Prof. Chad Rienstra, an internationally recognized
leader in the field of biomolecular SSNMR, who has mentored dozens of graduate students and postdocs, many
of whom are faculty members at top tier institutions. Environment: The University of Wisconsin-Madison is a
highly ranked research university, with among the best environments available in the world for structural biology,
with NMRFAM, the Cryo-EM Research Center, and the Center for High Throughput Computing. Prof. Katherine
Henzler-Wildman, co-director of NMRFAM with Prof. Rienstra, has a strong background in insoluble protein
structure and dynamics. Close collaboration with the cryo-EM group of Prof. Timothy Grant on fibril structure
determination will be an added capability. The excellent research environment at UW-Madison with Prof.
Rienstra will prepare me to be a future leader in structural biology and biophysics of complex biomolecules.
抽象的
突触核蛋白病是主要的公共卫生风险,每年有数百万人受到帕金森病的影响,
帕金森病伴痴呆(PDD)、路易体痴呆和多系统萎缩这些疾病。
影响运动和认知功能,目前尚无已知的治疗方法,治疗选择也有限。
因此,确定疾病病因至关重要,该病因是由错误折叠和错误折叠引起的。
这些致病原纤维的体内结构形式将有助于蛋白质 α-突触核蛋白聚集成原纤维。
了解错误折叠的机制并帮助开发具有更高结构的成像配体
我将结合使用固态 NMR (SSNMR) 和冷冻电镜/电子断层扫描 (cryo-EM/ET) 来确定结构。
然后我将研究体内原纤维四级结构如何控制。
成熟病态原纤维的稳定性和动态及其对α-突触核蛋白聚集途径的影响
我还将研究成像配体与这些原纤维的相互作用以确定结构基序。
通过比较体外和体内原纤维制剂之间的结合位点结构来结合这些化合物。
培训计划:我在膜蛋白的SSNMR方面有相当多的研究经验,并且我
将增加使用新颖的方法测定原纤维结构所需的 SSNMR 方法的培训
将模拟退火和分子动力学与冷冻电子显微镜(cryo-EM)相结合的方法,
冷冻电子断层扫描 (cryo-ET) 和 SSNMR 数据。
(NMRFAM) 提供世界领先的培训环境,可使用高场 SSNMR 波谱仪
(600 至 900 MHz)和超高场(1.1 GHz)SSNMR 波谱仪将于 2023 年抵达。
在这里,我将能够对病变原纤维及其结构和动力学做出新的发现
此外,我将接受冷冻电子断层扫描方面的培训,以获得诸如此类的补充数据。
如原纤维宽度、扭曲、单位长度质量,并利用冷冻电镜与 SSNMR 联合求解原子结构
这些发现将通过出版物和演讲传播给更大的科学界。
我的培训将在国际公认的 Chad Rienstra 教授的指导下进行。
生物分子SSNMR领域的领导者,指导了数十名研究生和博士后,其中许多
其中是顶级机构的教员。 环境:威斯康星大学麦迪逊分校是一所
排名靠前的研究型大学,拥有世界上最好的结构生物学环境之一,
与 NMRFAM、冷冻电镜研究中心和高通量计算中心 Katherine 教授合作。
Henzler-Wildman 是 NMRFAM 与 Rienstra 教授的联合主任,在不溶性蛋白质领域拥有深厚的背景
与 Timothy Grant 教授的冷冻电镜团队在纤维结构方面的密切合作。
威斯康辛大学麦迪逊分校的优秀研究环境和教授的决心将是一种额外的能力。
Rienstra 将使我成为复杂生物分子结构生物学和生物物理学领域未来的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Collin Griffin Borcik其他文献
Collin Griffin Borcik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dopaminergic mechanisms of resilience to Alzheimer's disease neuropathology
阿尔茨海默病神经病理学恢复的多巴胺能机制
- 批准号:
10809199 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Determining the mechanisms of the protective APOE3ch variant on Alzheimer's Disease pathologies
确定保护性 APOE3ch 变体对阿尔茨海默氏病病理的机制
- 批准号:
10750905 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
A Diagnostic Platform for Extracellular Vesicle-Derived Biomarkers - Towards Early Detection of Alzheimer's Disease
细胞外囊泡衍生生物标志物的诊断平台 - 迈向阿尔茨海默病的早期检测
- 批准号:
10629620 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别: