MOTES: Micro-scale Opto-electronically Transduced Electrode Sites
MOTES:微型光电转换电极位点
基本信息
- 批准号:9244414
- 负责人:
- 金额:$ 28.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AmplifiersAutomobile DrivingBackBrainCalciumCell DeathCellsChemicalsCodeCommunicationComplementComputer softwareCustomDataDetectionDevicesElectrodesElectronicsElectrophysiology (science)ElementsFluorescenceFluorescent DyesGeneticGliosisGoalsHarvestImageImaging TechniquesImaging technologyImmune responseImplanted ElectrodesIn VitroIndiumLifeLightLinkLocationMeasurementMeasuresMinorModalityModificationMonitorMotionNeurobiologyNeuronsNoiseOpticsPenetrationPhysiologic pulsePopulationReadingResolutionSemiconductorsSensorySideSignal TransductionSiliconSiteSliceSpecificityStimulusSystemTechnologyTimeTissuesbasebrain tissuecell typecostdesignfluorescence imagingimaging systemimplantable devicein vivolight intensitymillimeterminimally invasivemulti-photonoptical imagingrelating to nervous systemresearch studystemtemporal measurementvoltage
项目摘要
Summary
Our goal in this project is to develop a new class of electrical recording device that complements and piggy-
backs on cutting edge imaging technologies. Whereas multi-electrical recording has provided detailed
measurements of neural activity with high temporal precision, it is also invasive, provides relatively low spatial
resolution, and provides little information about the identity of measured neurons. Optical imaging techniques,
conversely, provide very fine spatial resolution, easing neural identification, but at the cost of significantly
worse temporal resolution, and with the requirement of either chemical (through fluorescent dyes) or genetic
modification of the tissue. In order to better bridge these two modalities, we envision developing untethered
Microscale Optoelectronically Transduced Electrodes (MOTEs) which combine optoelectronic elements for
power and communication with custom CMOS circuits for low-noise amplification and encoding of electrical
signals. Each MOTE will be powered by optically stimulated micro-photovoltaic cells and will use the resulting
1-2µW of electrical power to measure, amplify, and encode electrophysiological signals, up-linking this
information optically by driving an LED. MOTEs will avoid many of the problems associated with standard
wire- and shank-based electrodes, where most of the volume of the implanted electrode, and so most of the
tissue damage it does, stems from the long rigid shank that connects electrode sites to external electronics.
To be most useful, MOTEs' photovoltaics will be designed to harvest power from optical stimuli of the same
wavelengths and intensities as are used in stimulating fluorescence when imaging neural activity. Similarly,
the LED used for uplink will be designed to emit light at wavelengths and intensities consistent with those
detectable by a fluorescent imaging system. These choices will allow the both down- and up-link of optical
signals to be handled by existing imaging systems with minimal modification. By employing a pulsed
stimulation (as is used in multi-photon systems) and appropriately encoding and timing up-linked LED pulses,
fluorescent and MOTE emissions can be segregated into adjacent sub-microsecond time bins. This
combination of optical compatibility and temporal multiplexing will allow simultaneous imaging and electrical
recording of neural activity from the same volume of neural tissue, using the same optical imaging and
recording systems. This simultaneous, heterogeneous measurement capability will enable a much wider range
of experiments and studies of neural activity than are presently possible.
概括
我们在这个项目中的目标是开发一种新的电气录制设备,该设备已完成和小猪
后退尖端成像技术。多电记录提供了详细的记录
具有高临时精度的神经元活性的测量,它也具有侵入性,可提供相对较低的空间
分辨率,几乎没有有关测量神经元身份的信息。光学成像技术,
相反,提供非常精细的空间分辨率,缓解神经识别,但要付出很大的代价
临时分辨率更糟,并且需要化学(通过荧光染料)或遗传
组织的修饰。为了更好地弥合这两种方式,我们设想开发不受限制的
显微镜光电转导的电极(MOTE),这些电极(MOTE)结合了光电元件
电力和通信与定制CMOS电路,用于低噪声放大和编码电气
信号。每个微粒将由光学刺激的微伏洛伏型细胞提供动力,并将使用结果
1-2µW的电力,用于测量,扩增和编码电生理信号,上链接此
通过驾驶LED进行光学信息。 Motes将避免与标准相关的许多问题
电线和柄的电极,其中大部分植入电极,因此大多数
组织损坏它会造成的,从将电子位点连接到外部电子设备的较长的刚性小腿。
最有用的是,Motes的光伏技术将设计为从相同的光学刺激中收获功率
成像神经活动时,用于刺激荧光的波长和强度。相似地,
用于上行链路的LED将设计为在波长和强度与与之一致的波长和强度下发出光
可通过荧光成像系统检测。这些选择将允许光学的下降和上链接
通过具有最小修改的现有成像系统来处理的信号。通过使用脉冲
刺激(如多光子系统中使用),并适当编码和定时上连接的LED脉冲,
荧光和软体动物的排放可以分离为相邻的亚微秒时箱。这
光学兼容性和临时多路复用的组合将允许同时成像和电动
使用相同的光学成像和
记录系统。这种同时的,异构的测量能力将使更广泛的范围
目前可能的实验和神经活动的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Heymann Goldberg其他文献
Jesse Heymann Goldberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Heymann Goldberg', 18)}}的其他基金
Neural Mechanisms of Social Communication in Parrots
鹦鹉社会交流的神经机制
- 批准号:
10207958 - 财政年份:2021
- 资助金额:
$ 28.18万 - 项目类别:
MOTES: Micro-scale Opto-electronically Transduced Electrode Sites
MOTES:微型光电转换电极位点
- 批准号:
9360613 - 财政年份:2016
- 资助金额:
$ 28.18万 - 项目类别:
Neural Mechanisms of Performance Evaluation During Motor Sequence Learning
运动序列学习过程中表现评估的神经机制
- 批准号:
10183339 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Neural mechanisms of performance evaluation during motor sequence learning
运动序列学习过程中表现评估的神经机制
- 批准号:
9306224 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Neural Mechanisms of Performance Evaluation During Motor Sequence Learning
运动序列学习过程中表现评估的神经机制
- 批准号:
10658875 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Neural mechanisms of performance evaluation during motor sequence learning
运动序列学习过程中表现评估的神经机制
- 批准号:
9136884 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Neural mechanisms of performance evaluation during motor sequence learning
运动序列学习过程中表现评估的神经机制
- 批准号:
9753376 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Neural Mechanisms of Performance Evaluation During Motor Sequence Learning
运动序列学习过程中表现评估的神经机制
- 批准号:
10437774 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Identifying pathways for motor variability in the mammalian brain
识别哺乳动物大脑运动变异的途径
- 批准号:
8955334 - 财政年份:2015
- 资助金额:
$ 28.18万 - 项目类别:
Basal Ganglia-Thalamic Interactions in Behaving Songbirds During Learning
鸣禽学习过程中基底神经节-丘脑的相互作用
- 批准号:
8711569 - 财政年份:2010
- 资助金额:
$ 28.18万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:52272413
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
$ 28.18万 - 项目类别:
Mechanisms of Cellular Senescence Driving Intervertebral Disc Aging through Local Cell Autonomous and Systemic Non-Cell Autonomous Processes
细胞衰老通过局部细胞自主和全身非细胞自主过程驱动椎间盘老化的机制
- 批准号:
10635092 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Role Of Retinoid Oxidoreductase Complex In Controlling The Embryonic Development
类维生素A氧化还原酶复合物在控制胚胎发育中的作用
- 批准号:
10658252 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Programming of Resident Macrophages by the Brain Environment Following Transplantation
移植后大脑环境对常驻巨噬细胞的编程
- 批准号:
10790219 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Defining the shared transcriptional network underlying Toxoplasma extracellular stress and stage transition
定义弓形虫细胞外应激和阶段转变背后的共享转录网络
- 批准号:
10682134 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别: