Elucidating the dynamic role of PTPsigma in synaptic nano-organization and NMDA receptor function
阐明 PTPsigma 在突触纳米组织和 NMDA 受体功能中的动态作用
基本信息
- 批准号:10606077
- 负责人:
- 金额:$ 4.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AMPA ReceptorsAction PotentialsAcuteAffectAnxiety DisordersBindingBrainCell Adhesion MoleculesCellsChronicCognitionCommunicationCompensationConfocal MicroscopyDLG4 geneDNADevelopmentElectrophysiology (science)EngineeringEvoked PotentialsExcitatory SynapseExperimental DesignsExtracellular DomainFamilyFellowshipGeneticGenetic Complementation TestGlutamate ReceptorGoalsHippocampusImageKnock-outLeadLearningMeasuresMediatingMemoryMental DepressionMethodologyMicroscopyModelingMolecular BiologyN-Methyl-D-Aspartate ReceptorsN-MethylaspartateN-terminalNanostructuresNeuronsNeurosciencesOpticsPathologyPeptide HydrolasesPhysiologyPlayPositioning AttributeProbabilityProcessProtein FamilyProtein Tyrosine PhosphataseProteinsReceptor ActivationRegulationResearch PersonnelResistanceResolutionRoleScaffolding ProteinSiteStructureSynapsesSynaptic CleftSynaptic TransmissionTechniquesTestingTrainingUniversitiesVesicleWorkautism spectrum disordercareerdensityexperimental studyextracellularimprovedinsightknock-downlive cell imagingmembermutantnanonanocolumnnanoscaleneuropsychiatric disorderneurotransmitter releasenovelpatch clamppostsynapticpresynapticprotein complexreceptorreceptor functionresponsescaffoldsingle moleculesuperresolution microscopysynaptogenesistransmission processvesicular release
项目摘要
Fine tuning the efficiency of synaptic transmission is essential for learning and memory, while its disruption is
associated with diverse pathologies including autism spectrum disorder, depression, and anxiety disorders.
Thus, identifying mechanisms that regulate synaptic strength is a central goal in neuroscience. Since such
plasticity is frequently triggered by activation of NMDA-type glutamate receptors, understanding the regulation
of NMDA receptors is particularly critical. Recent studies indicate synaptic strength and NMDA receptor
activation can be directly affected by the nanometer-scale organization of proteins within the synapse. Many
synaptic proteins, including vesicle release machinery and postsynaptic scaffolds and receptors, display a
heterogeneous organization with local regions of high protein density, known as nanodomains (NDs). These
NDs can be aligned across the synapse to form a “nanocolumn”, which our lab has demonstrated is the site of
action potential-evoked vesicle fusion and maximal receptor activation. New work from our lab has established
a novel role for the postsynaptic cell-adhesion molecule (CAM) LRRTM2 in positioning AMPA receptors within
the nanocolumn. While CAMs have well-established roles in synapse formation and development, these recent
findings highlight the possibility that CAMs may coordinate synaptic nanostructure and function in the mature
synapse. However, the mechanism by which presynaptic organization and vesicle fusion sites are communicated
to proteins within the postsynaptic density to enable alignment to occur remains unknown. In this proposal I will
investigate whether the presynaptic CAM PTPσ coordinates nanocolumn alignment. PTPσ is important for
synapse formation, is present in the mature synapse, and forms indirect interactions with both pre- and
postsynaptic machinery located within the nanocolumn. Loss of PTPσ impacts both pre- and postsynaptic
physiology, most notably NMDA receptor-mediated responses. Previous attempts to study PTPσ have relied on
chronic manipulations, such as knockouts and knockdowns. However, interpretations are complicated by its
initial role in synapse formation during development. I propose to elucidate the ongoing functions of PTPσ by
acutely disrupting its cleft interactions via cleavage by an exogenous protease. This highly specific and acute
approach will allow me to manipulate PTPσ’s cleft interactions to isolate their functions, without compromising
its earlier role in synapse formation. Throughout this project, I will use super-resolution microscopy,
electrophysiology, molecular biology, and live-cell imaging to test the role of PTPσ cleft interactions in
maintaining nanocolumn alignment and regulating NMDA receptor-mediated transmission. This work will provide
novel insight regarding the roles of a critical family of presynaptic CAMs following development and will test a
new candidate mechanism for the coordination of synaptic nanostructure and NMDA receptor function. The
training obtained under this fellowship will provide deep and diverse training in methodologies and professional
development that will prepare me excel in my career as an academic researcher at a biomedical university.
微调突触传递的效率对于学习和记忆至关重要,而突触传递的破坏则对学习和记忆至关重要。
与多种病症相关,包括自闭症谱系障碍、抑郁症和焦虑症。
因此,识别调节突触强度的机制是神经科学的一个中心目标。
可塑性经常由 NMDA 型谷氨酸受体的激活触发,了解其调节机制
最近的研究表明突触强度和 NMDA 受体的关系尤其重要。
突触内蛋白质的纳米级组织可以直接影响激活。
突触蛋白,包括囊泡释放机制和突触后支架和受体,显示出
具有高蛋白质密度局部区域的异质组织,称为纳米域(ND)。
ND 可以在突触上排列形成“纳米柱”,我们的实验室已经证明这是
我们实验室的新工作已经建立了动作电位诱发的囊泡融合和最大受体激活。
突触后细胞粘附分子 (CAM) LRRTM2 在定位 AMPA 受体中的新作用
虽然 CAM 在突触形成和发育中具有明确的作用,但最近的这些研究
研究结果强调了 CAM 可能在成熟细胞中协调突触纳米结构和功能的可能性。
然而,突触前组织和囊泡融合位点的沟通机制
突触后密度内的蛋白质如何使排列发生仍然未知。
研究突触前 CAM PTPσ 协调纳米柱对齐是否重要。
突触形成,存在于成熟突触中,并与前突触和突触形成间接相互作用
位于纳米柱内的突触后机制 PTPσ 的损失会影响突触前和突触后。
生理学,尤其是 NMDA 受体介导的反应,之前研究 PTPσ 的尝试依赖于 NMDA 受体介导的反应。
然而,其解释却很复杂。
我建议通过以下方式阐明 PTPσ 在突触形成中的初始作用。
通过外源蛋白酶的切割,急剧破坏其裂口相互作用,这种高度特异性和急性的。
该方法将允许我操纵 PTPσ 的裂隙相互作用来隔离它们的功能,而不会影响
它在突触形成中的早期作用在整个项目中,我将使用超分辨率显微镜,
电生理学、分子生物学和活细胞成像来测试 PTPσ 裂隙相互作用在
这项工作将提供维持纳米柱排列和调节 NMDA 受体介导的传输。
关于突触前 CAM 关键家族在发育后的作用的新颖见解,并将测试
协调突触纳米结构和 NMDA 受体功能的新候选机制。
在该研究金下获得的培训将提供方法论和专业方面的深入和多样化的培训
我的发展将使我在生物医学大学担任学术研究员的职业生涯中取得优异的成绩。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily M. DeMarco其他文献
Cocaine increases the stimulation of dopamine release, at variance with atypical dopamine uptake inhibitors. New clues for the abuse liability of psychostimulants?
可卡因会增加多巴胺释放的刺激,这与非典型多巴胺摄取抑制剂不同。
- DOI:
10.1096/fasebj.2019.33.1_supplement.805.13 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:0
- 作者:
Jacqueline D. Keighron;J. Bonaventura;Yang Li;Jianjing Cao;Emily M. DeMarco;W. Sandtner;M. Michaelides;H. Sitte;A. Newman;G. Tanda - 通讯作者:
G. Tanda
A selected review of recent advances in the study of neuronal circuits using fiber photometry
使用光纤光度法研究神经元回路的最新进展综述
- DOI:
10.1016/j.pbb.2021.173113 - 发表时间:
2021-01-11 - 期刊:
- 影响因子:3.6
- 作者:
Yuanmo Wang;Emily M. DeMarco;Lisa Sophia Witzel;Jacqueline D. Keighron - 通讯作者:
Jacqueline D. Keighron
Loss of postsynaptic NMDARs drives nanoscale reorganization of Munc13-1 and PSD-95
突触后 NMDAR 的丢失驱动 Munc13-1 和 PSD-95 的纳米级重组
- DOI:
10.1101/2024.01.12.574705 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:0
- 作者:
Poorna A. Dharmasri;Emily M. DeMarco;Michael C. Anderson;Aaron D. Levy;T. Blanpied - 通讯作者:
T. Blanpied
Emily M. DeMarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
VMH SF1 neurons-originated sympathetic circuits modulating iWAT and iBAT
VMH SF1 神经元起源的交感神经回路调节 iWAT 和 iBAT
- 批准号:
10635521 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
- 批准号:
10608612 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Determining the effects of human KCC2 mutations on neuronal excitability
确定人类 KCC2 突变对神经元兴奋性的影响
- 批准号:
10018116 - 财政年份:2019
- 资助金额:
$ 4.22万 - 项目类别:
Determining the effects of human KCC2 mutations on neuronal excitability
确定人类 KCC2 突变对神经元兴奋性的影响
- 批准号:
9894063 - 财政年份:2019
- 资助金额:
$ 4.22万 - 项目类别:
Regulation of myelination after spinal cord injury
脊髓损伤后髓鞘形成的调节
- 批准号:
10412019 - 财政年份:2018
- 资助金额:
$ 4.22万 - 项目类别: