Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States

美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模

基本信息

  • 批准号:
    10708823
  • 负责人:
  • 金额:
    $ 62.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

The goal of this project is to prevent and reduce deaths and injuries due to opioids in the United States by determining the best combination of state and local harm reduction and drug paraphernalia laws needed to reduce overdose rates and other opioid-related harms. To do this, we will: 1) conduct original review of laws on relevant harm reduction and drug paraphernalia laws in the 836 municipalities with >50,000 people and associated counties; 2) conduct biannual surveys on implementation of harm reduction laws and drug paraphernalia laws by law enforcement; 3) create an extensive national dataset by merging data on state and local harm reduction and drug paraphernalia laws; implementation of laws by law enforcement; EMS and fatality data; and information on local harm reduction resources, and socioeconomic indicators; 4) use the merged dataset to determine which combinations of state and local laws have resulted in the biggest decreases in overdoses and related harms; and (5) determine which local characteristics enhanced those effective combinations of policies. Overdose deaths in the United States increased more than six-fold since 2001, and now account for more loss of life than high blood pressure, AIDS, and pneumonia. States, cities, and counties are combating this epidemic by passing laws to reduce overdoses, and by investing in access to harm reduction services. But these efforts are often undertaken in isolation and without considering how the different state and local laws interact or how local factors like enforcement of laws and access to harm reduction services influence their effectiveness. This project will help answer those questions by using large data and powerful analytics to bring together all the evidence on this complicated topic. At the end of the project, we will be able to anwer the following questions: What combinations of state and local harm reduction and drug paraphernalia laws most effectively prevent and reduce opioid deaths and injuries in the United States? And how can we best support local efforts to ensure that those effective combinations have the greatest impact?
该项目的目的是预防和减少由于美国阿片类药物的死亡和伤害 确定国家减少和地方危害的最佳组合以及所需的毒品用具法 降低过量率和其他与阿片类药物有关的危害。为此,我们将:1)对 在836个市政当局中,相关的减少危害和毒品用具法律,> 50,000人和 相关县; 2)对减少损害法律和毒品的实施双年度调查 执法法律法律; 3)通过合并状态和 减少局部伤害和毒品用具法;执法执行法律; EMS和死亡 数据;以及有关减少当地危害资源和社会经济指标的信息; 4)使用合并 数据集以确定哪种国家和地方法律的组合导致最大减少 过量和相关危害; (5)确定哪些本地特征增强了这些特征 政策的组合。自2001年以来,美国的过量死亡人数增长了六倍以上, 现在,比高血压,艾滋病和肺炎相比,生命损失更多。国家,城市和县 通过通过法律来减少过量服药,并通过投资获得损害减少来与这种流行病作斗争 服务。但是,这些努力通常是孤立进行的,而没有考虑不同国家和 当地法律互动或当地因素如何执行法律和获得损害减少服务的影响 他们的有效性。该项目将通过使用大数据和强大的分析来帮助回答这些问题 将所有关于这个复杂主题的证据汇总在一起。在项目结束时,我们将能够 以下问题:最多的国家和地方危害和毒品用具法的组合最多 有效预防和减少美国的阿片类药物死亡和伤害?以及我们如何最好的支持 当地的努力确保这些有效的组合具有最大的影响?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magdalena Cerda其他文献

Magdalena Cerda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magdalena Cerda', 18)}}的其他基金

A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
  • 批准号:
    10629749
  • 财政年份:
    2023
  • 资助金额:
    $ 62.9万
  • 项目类别:
Understanding the short- and long-term effects of the COVID-19 pandemic on the overdose crisis
了解 COVID-19 大流行对药物过量危机的短期和长期影响
  • 批准号:
    10739492
  • 财政年份:
    2023
  • 资助金额:
    $ 62.9万
  • 项目类别:
Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
  • 批准号:
    10521949
  • 财政年份:
    2022
  • 资助金额:
    $ 62.9万
  • 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
  • 批准号:
    10055772
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10026087
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
  • 批准号:
    9987897
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10220922
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    9817054
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:
Examining the Synergistic Effects of Cannabis and Prescription Opioid Policies on Chronic Pain, Opioid Prescribing, and Opioid Overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
  • 批准号:
    10208128
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10173211
  • 财政年份:
    2019
  • 资助金额:
    $ 62.9万
  • 项目类别:

相似海外基金

RP1 Screen 2 Prevent
RP1 屏蔽 2 预防
  • 批准号:
    10595901
  • 财政年份:
    2023
  • 资助金额:
    $ 62.9万
  • 项目类别:
Penn Mental Health AIDS Research Center
宾夕法尼亚州心理健康艾滋病研究中心
  • 批准号:
    10819857
  • 财政年份:
    2023
  • 资助金额:
    $ 62.9万
  • 项目类别:
Predicting fatal and non-fatal overdose in Los Angeles County with Rapid Overdose Surveillance Dashboard to target street-based addiction treatment and harm reduction services
利用快速过量用药监测仪表板预测洛杉矶县的致命和非致命用药过量,以针对街头成瘾治疗和减少伤害服务
  • 批准号:
    10589518
  • 财政年份:
    2022
  • 资助金额:
    $ 62.9万
  • 项目类别:
Structural Racism and Discrimination in Emergency Department Transfers: Unintended Consequences of the Emergency Medical Treatment and Labor Act (EMTALA)
急诊科转诊中的结构性种族主义和歧视:《紧急医疗和劳动法》(EMTALA) 的意外后果
  • 批准号:
    10610426
  • 财政年份:
    2022
  • 资助金额:
    $ 62.9万
  • 项目类别:
PrEP-ED: PrEP Services in the Emergency Department for Hard-to-Reach Populations
PrEP-ED:急诊科为难以接触到的人群提供的 PrEP 服务
  • 批准号:
    10484515
  • 财政年份:
    2022
  • 资助金额:
    $ 62.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了