Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
基本信息
- 批准号:10708823
- 负责人:
- 金额:$ 62.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AbateAccident and Emergency departmentAcquired Immunodeficiency SyndromeAddressAmericanAreaBayesian ModelingCessation of lifeCharacteristicsCitiesCommunitiesComplexCountyDataData SetData SourcesDatabasesDocumentationDrug usageEffectivenessEmergency CareEmergency medical serviceEndocarditisEpidemicGoalsGrantHIVHarm ReductionHepatitis BHepatitis CHypertensionIndividualInfectious Skin DiseasesInformation SystemsInjuryInterventionInvestmentsJointsLaw EnforcementLawsLegalLevel of EvidenceLifeLocationMeasuresMethodsModelingMorbidity - disease rateMunicipalitiesNaloxoneNational Institute of Drug AbuseNeedle-Exchange ProgramsOpioidOverdoseOverdose reductionPaperPersonsPharmaceutical PreparationsPharmacy facilityPneumoniaPoliciesReportingResearchResourcesRoleServicesSterilitySurveysSyringesSystemTestingUS StateUnited StatesVital Statisticsdashboarddata accessdensitydrug distributioneconomic indicatorinterestmortalitymortality statisticsmultiple data sourcesoperationopioid injectionopioid mortalityopioid overdoseoverdose deathoverdose educationoverdose preventionpreventprogramssecondary analysisservice programssocioeconomicsspatiotemporaluser-friendly
项目摘要
The goal of this project is to prevent and reduce deaths and injuries due to opioids in the United States by
determining the best combination of state and local harm reduction and drug paraphernalia laws needed to
reduce overdose rates and other opioid-related harms. To do this, we will: 1) conduct original review of laws on
relevant harm reduction and drug paraphernalia laws in the 836 municipalities with >50,000 people and
associated counties; 2) conduct biannual surveys on implementation of harm reduction laws and drug
paraphernalia laws by law enforcement; 3) create an extensive national dataset by merging data on state and
local harm reduction and drug paraphernalia laws; implementation of laws by law enforcement; EMS and fatality
data; and information on local harm reduction resources, and socioeconomic indicators; 4) use the merged
dataset to determine which combinations of state and local laws have resulted in the biggest decreases in
overdoses and related harms; and (5) determine which local characteristics enhanced those effective
combinations of policies. Overdose deaths in the United States increased more than six-fold since 2001, and
now account for more loss of life than high blood pressure, AIDS, and pneumonia. States, cities, and counties
are combating this epidemic by passing laws to reduce overdoses, and by investing in access to harm reduction
services. But these efforts are often undertaken in isolation and without considering how the different state and
local laws interact or how local factors like enforcement of laws and access to harm reduction services influence
their effectiveness. This project will help answer those questions by using large data and powerful analytics to
bring together all the evidence on this complicated topic. At the end of the project, we will be able to anwer the
following questions: What combinations of state and local harm reduction and drug paraphernalia laws most
effectively prevent and reduce opioid deaths and injuries in the United States? And how can we best support
local efforts to ensure that those effective combinations have the greatest impact?
该项目的目标是通过以下方式预防和减少美国阿片类药物造成的死亡和伤害:
确定州和地方减少伤害和吸毒用具法律的最佳组合
减少过量服用率和其他与阿片类药物相关的危害。为此,我们将:1)对以下方面的法律进行初步审查:
836 个人口超过 50,000 的城市的相关减少伤害和吸毒用具法律
相关县; 2) 每半年对减少危害法和毒品的实施情况进行一次调查
执法部门制定的用具法; 3)通过合并州和州的数据来创建广泛的国家数据集
当地减少伤害和吸毒用具法律;执法部门执行法律; EMS 和死亡
数据;有关当地减少危害资源和社会经济指标的信息; 4)使用合并后的
数据集来确定州和地方法律的哪些组合导致了最大的下降
药物过量及相关危害; (5) 确定哪些地方特征增强了这些有效措施
政策组合。自 2001 年以来,美国服药过量死亡人数增加了六倍多,
现在造成的生命损失比高血压、艾滋病和肺炎还要多。州、市和县
正在通过法律减少用药过量,并投资于减少伤害的途径来抗击这一流行病
服务。但这些努力往往是孤立进行的,没有考虑不同国家和地区如何
当地法律相互作用或当地因素(例如法律执行和获得减少伤害服务的机会)如何影响
他们的有效性。该项目将通过使用大数据和强大的分析来帮助回答这些问题
汇集有关这个复杂主题的所有证据。在项目结束时,我们将能够回答
以下问题: 州和地方减少伤害和吸毒用具法律的哪些组合最有效
有效预防和减少美国阿片类药物死亡和伤害?我们如何才能最好地支持
地方努力确保这些有效的组合产生最大的影响?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena Cerda其他文献
Magdalena Cerda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena Cerda', 18)}}的其他基金
A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
- 批准号:
10629749 - 财政年份:2023
- 资助金额:
$ 62.9万 - 项目类别:
Understanding the short- and long-term effects of the COVID-19 pandemic on the overdose crisis
了解 COVID-19 大流行对药物过量危机的短期和长期影响
- 批准号:
10739492 - 财政年份:2023
- 资助金额:
$ 62.9万 - 项目类别:
Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
- 批准号:
10521949 - 财政年份:2022
- 资助金额:
$ 62.9万 - 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
- 批准号:
10055772 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
10026087 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
- 批准号:
9987897 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
10220922 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
9817054 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
Examining the Synergistic Effects of Cannabis and Prescription Opioid Policies on Chronic Pain, Opioid Prescribing, and Opioid Overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
- 批准号:
10208128 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
10173211 - 财政年份:2019
- 资助金额:
$ 62.9万 - 项目类别:
相似海外基金
Predicting fatal and non-fatal overdose in Los Angeles County with Rapid Overdose Surveillance Dashboard to target street-based addiction treatment and harm reduction services
利用快速过量用药监测仪表板预测洛杉矶县的致命和非致命用药过量,以针对街头成瘾治疗和减少伤害服务
- 批准号:
10589518 - 财政年份:2022
- 资助金额:
$ 62.9万 - 项目类别:
Structural Racism and Discrimination in Emergency Department Transfers: Unintended Consequences of the Emergency Medical Treatment and Labor Act (EMTALA)
急诊科转诊中的结构性种族主义和歧视:《紧急医疗和劳动法》(EMTALA) 的意外后果
- 批准号:
10610426 - 财政年份:2022
- 资助金额:
$ 62.9万 - 项目类别:
PrEP-ED: PrEP Services in the Emergency Department for Hard-to-Reach Populations
PrEP-ED:急诊科为难以接触到的人群提供的 PrEP 服务
- 批准号:
10484515 - 财政年份:2022
- 资助金额:
$ 62.9万 - 项目类别: