Control of Telomere Homeostasis by Nucleotide Metabolism in Hematopoiesis
造血过程中核苷酸代谢对端粒稳态的控制
基本信息
- 批准号:10606171
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Academic skillsAgeAplastic AnemiaAwardBiochemicalBioinformaticsBiologyBlood CellsBone Marrow TransplantationBone marrow failureBostonCRISPR screenCell divisionCellsChildhoodChromosomesCommunicationDNADataDefectDegenerative DisorderDeoxyribonucleotidesDiagnosisDiseaseDyskeratosis CongenitaDysmyelopoietic SyndromesEnvironmentFaceFutureGenesGeneticGenetic ScreeningGenetic studyGenome StabilityGoalsGrowthHealthHematologyHematopoiesisHematopoieticHematopoietic SystemHematopoietic stem cellsHomeostasisHumanHuman Cell LineHuman GeneticsHuman GenomeIn VitroInheritedInterventionInvestigationKnowledgeLaboratoriesLengthLifeLinkLiver CirrhosisMentorsMetabolismModelingMutationNucleotidesOrgan TransplantationOrgan failureOutcomeOutputPathway interactionsPatientsPediatric HospitalsPhysiciansPhysiologicalPopulationPredispositionPrevalencePrognosisPulmonary FibrosisRNA-Directed DNA PolymeraseRegenerative capacityRegulationResearchRiskRoleScientistSomatic MutationSupplementationSupportive careSystemic TherapySystemic diseaseTERT geneTelomeraseTelomere MaintenanceTelomere Maintenance GeneTelomere ShorteningTestingTherapeuticThymidineTraining ProgramsTranslatingTranslationsTransplant RecipientsWorkbone marrow failure syndromecareercareer preparationdesignexperienceexperimental studygenome wide association studygenome wide screengenome-widehuman modelhuman population geneticsimprovedin vivoin vivo Modelinduced pluripotent stem cellloss of functionmedical schoolsmetabolomicsmutantnovelnovel strategiesnucleotide metabolismpreventpromoterprotein structureregenerative tissuesenescencesmall moleculetelomere
项目摘要
PROJECT SUMMARY/ABSTRACT:
Telomere homeostasis is critical for cellular replicative capacity and human health. Telomeres shorten with
cellular replication and when critically short, trigger senescence and halt cell division. Inherited mutations in
telomere maintenance genes are associated with severe hematopoietic disorders including childhood-onset
bone marrow failure, aplastic anemia, and myelodysplastic syndrome, as well as non-hematopoietic conditions
including liver cirrhosis and pulmonary fibrosis. These diseases are collectively referred to as telomere biology
disorders (TBDs). Treatment for TBDs is centered on supportive care and bone marrow or organ transplant
which often have poor outcomes and leave patients at risk for other disease manifestations. New approaches to
therapeutically lengthen telomeres and treat TBDs are needed. In order to identify novel pathways controlling
human telomere length, we recently performed a genome-wide CRISPR/Cas9 screen with a telomere length
readout. In addition to identifying known telomere maintenance genes, we identified an association between
several nucleotide metabolism genes and telomere length. Recent human genome wide association studies
have also connected nucleotide metabolism genes and telomere length in blood cells. Preliminary experiments
performed in our laboratory demonstrate that both genetic and small molecule perturbations of nucleotide
metabolism can rapidly and robustly alter telomere length in human cells, including induced pluripotent stem
cells derived from patients with TBDs. However, there are fundamental knowledge gaps both in the mechanisms
underlying this effect, and whether manipulating nucleotide metabolism could alter telomere maintenance in the
hematopoietic system, which could be therapeutically useful. Here, we aim to uncover how nucleotide
metabolism perturbations alter telomere length in human cells, including in vitro and in vivo models of human
hematopoiesis. This study consists of two aims to investigate: (1) how altering nucleotide metabolism genes
impacts telomere maintenance, and (2) how small molecule manipulation of nucleotide metabolism alters
telomere homeostasis, in human cells including primary hematopoietic stem and progenitor cells. For this F30
award, the PI has designed a research strategy and training program that will provide him with: (1) fundamental
expertise in metabolomics, bioinformatics, and telomere biology, (2) an expert group of mentors and
collaborators to promote not only research expertise, but also career-long academic skills including
grantsmanship and scientific communication, and (3) experience performing translation-focused hematology
research in preparation for his career goal as a physician-scientist. This proposal will take place in the rich and
collaborative Harvard Medical School and Boston Children’s Hospital research environments. Completion of this
work is expected to establish nucleotide metabolism as a critical regulator of human telomere homeostasis, with
therapeutic implications for the treatment of hematopoietic diseases with high unmet need including bone marrow
failure and aplastic anemia, as well as other non-hematopoietic degenerative diseases.
项目概要/摘要:
端粒稳态对于细胞复制能力和人类健康至关重要。
细胞复制,当非常短时,会引发衰老并停止细胞分裂的遗传突变。
端粒维持基因与严重造血疾病(包括儿童期发病)有关
骨髓衰竭、再生障碍性贫血、骨髓增生异常综合征以及非造血疾病
包括肝硬化和肺纤维化这些疾病统称为端粒生物学。
TBD 的治疗以支持治疗和骨髓或器官移植为中心。
这通常会产生不良结果,并使患者面临其他疾病表现的风险。
为了确定新的控制途径,需要进行治疗性延长端粒并治疗 TBD。
人类端粒长度,我们最近进行了全基因组 CRISPR/Cas9 筛选,确定了端粒长度
除了识别已知的端粒维持基因之外,我们还确定了两者之间的关联。
一些核苷酸代谢基因和端粒长度的最新人类基因组广泛关联研究。
还进行了初步实验,将核苷酸代谢基因与血细胞中的端粒长度联系起来。
在我们的实验室进行的实验表明,核苷酸的遗传和小分子扰动
新陈代谢可以快速而有力地改变人类细胞的端粒长度,包括诱导多能干细胞
然而,这两种机制都存在基础知识空白。
这种效应的背后,以及操纵核苷酸代谢是否可以改变端粒的维持
造血系统,这可能具有治疗作用,在这里,我们的目标是揭示核苷酸如何发挥作用。
新陈代谢扰动会改变人类细胞的端粒长度,包括人类的体外和体内模型
这项研究包括两个目的:(1)如何改变核苷酸代谢基因。
影响端粒维持,以及(2)小分子操纵核苷酸代谢如何改变
端粒稳态,在人类细胞中,包括初级造血干细胞和祖细胞。
获得奖项后,PI 设计了一项研究策略和培训计划,将为他提供:(1)基础知识
代谢组学、生物信息学和端粒生物学方面的专业知识,(2) 由导师和专家组成的专家组
合作者不仅要提升研究专业知识,还要提升整个职业生涯的学术技能,包括
资助和科学交流,以及 (3) 从事以翻译为中心的血液学研究的经验
为他作为医生科学家的职业目标做准备的研究 该提案将在富人和富人中进行。
哈佛医学院和波士顿儿童医院的合作研究环境完成。
预计工作将确立核苷酸代谢作为人类端粒稳态的关键调节剂,
对治疗包括骨髓在内的需求未得到满足的造血系统疾病的治疗意义
衰竭和再生障碍性贫血,以及其他非造血系统退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Mannherz其他文献
William Mannherz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
1/2A Phase III Randomized Trial Comparing Unrelated Donor Bone Marrow Transplantation with Immune Suppressive Therapy for Newly Diagnosed Pediatric and Young Adult Patients with Severe Aplastic Anemia
1/2A III 期随机试验,比较无关供体骨髓移植与免疫抑制治疗对新诊断患有严重再生障碍性贫血的儿童和年轻成人患者的影响
- 批准号:
10370775 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Integration of HSC Stress Responses and Disease Progression by DNMT3A Mutations
DNMT3A 突变整合 HSC 应激反应和疾病进展
- 批准号:
10506906 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Autoimmune responses associated with SARS-CoV-2 infection
与 SARS-CoV-2 感染相关的自身免疫反应
- 批准号:
10611414 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
The role of Rpl5 haploinsufficiency in hematopoietic stem/progenitor cell function in Diamond Blackfan anemia
Rpl5 单倍体不足在 Diamond Blackfan 贫血造血干/祖细胞功能中的作用
- 批准号:
10578722 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别: