Transposon control as a checkpoint during regeneration
转座子控制作为再生过程中的检查点
基本信息
- 批准号:10607420
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAffectAnimalsBiological AssayCellsChemicalsChromatinComplexConeDNA DamageDNA Transposable ElementsDataData SetDefectDevelopmentElementsEnvironmentEukaryotaEyeFamilyFoundationsGene Expression ProfileGeneticGenomeGenomicsGonadal structureHomeostasisHumanInflammationInflammatoryInflammatory ResponseInjuryMediatingMobile Genetic ElementsModelingMolecularMusNatural regenerationNeuronsNucleic AcidsOrganismOutcomePathway interactionsPatternPhotoreceptorsPlanariansProcessProliferatingProteinsRecoveryRecovery of FunctionRegenerative MedicineRegenerative capacityRegulationReportingRepressionResolutionRetinaRoleSalamanderSea CucumbersSpecificityStructureStudy modelsSystemTestingTimeTissue-Specific Gene ExpressionTissuesUp-RegulationUrochordataVariantWorkZebrafishcell typecomparativeexperimental studyeye regenerationfunctional restorationgenetic analysisgenome integrityimprovedin vivoinhibitorinjuredinsightmodel organismmultimodalitymultiple omicsmutantnovelpharmacologicregenerativeregenerative therapyresponse to injuryretinal neuronretinal regenerationsingle-cell RNA sequencingstem cell self renewalstem cellstimelinetissue injurytissue regenerationtissue repairtranscriptome sequencingtranscriptomicstransposon/insertion element
项目摘要
PROJECT SUMMARY / ABSTRACT
Tissue regeneration is the process through which damaged tissue is restored to its original structure and
function. There is wide variation across species in their regenerative ability. For example, zebrafish can
regenerate all retinal neurons after injury while humans and mice cannot. Understanding the genetic basis and
molecular underpinnings of complex tissue regeneration in model species holds the promise to enhance human
regenerative medicine. Here I am using zebrafish to test the novel hypothesis that the control of transposable
elements (TEs) is a necessary checkpoint for complex tissue regeneration.
TEs are mobile DNA elements capable of self-replication that are ubiquitous and abundant in eukaryotes.
Uncontrolled TE activity leads to accumulation of TE-encoded nucleic acids and proteins that interfere with cell
homeostasis and can result in DNA damage, disrupting genome integrity. TE upregulation has been reported
during tissue regeneration in salamanders, sea cucumbers, and worms. I hypothesize that TE activation is a
hallmark of tissue injury that must be suppressed for successful regeneration, and an inability to suppress TEs
will stall regeneration. Supporting this hypothesis, my preliminary analyses of bulk RNA-seq data reveal TE
upregulation during early stages of eye regeneration that are later restored to control levels prior to tissue repair.
I predict that zebrafish and other organisms with a strong regenerative capacity deploy specific control systems
to suppress TE activity during regeneration. Here I will directly test the role of the Piwi pathway in suppressing
TE activity during zebrafish eye regeneration. The Piwi pathway is known to repress TEs in animal gonads,
including zebrafish, but there is growing evidence that the pathway is active in somatic tissues and required for
regeneration in planarians. Furthermore, I have detected piwil1 expression in the zebrafish eye, raising the
testable hypothesis that it functions during eye regeneration.
I will utilize a model of zebrafish retinal regeneration and a 2-pronged approach combining multimodal
genomics and manipulative experimentation. First, I will further establish that TE upregulation is a hallmark of
tissue injury by profiling TE expression changes across five regenerating tissues using publicly available single-
cell transcriptomic data. Second, I will generate a multi-omic single-cell dataset to assess TE expression changes
during cone regeneration from the onset of injury through to functional recovery. These data will provide the most
comprehensive and precise view of TE expression dynamics during regeneration for any species. Lastly, I will
directly test whether TE repression is required for regeneration by modulating TE activity using Piwi pathway
mutants and chemical inhibitors of TE activity. Together the outcomes of this project will be the first to directly
assess the role of TE activity and regulation during complex tissue regeneration. Moreover, these studies will
lay the foundation for new testable hypotheses surrounding differences between regeneratively competent
versus incompetent organisms and lead to the development of novel regenerative therapies.
项目概要/摘要
组织再生是受损组织恢复其原始结构并恢复其原有结构的过程。
功能。不同物种的再生能力存在很大差异。例如,斑马鱼可以
损伤后所有视网膜神经元都能再生,而人类和小鼠则不能。了解遗传基础和
模型物种复杂组织再生的分子基础有望增强人类
再生医学。在这里,我使用斑马鱼来测试转座子控制的新假设
元素(TE)是复杂组织再生的必要检查点。
TE 是能够自我复制的移动 DNA 元件,在真核生物中普遍存在且含量丰富。
不受控制的 TE 活性会导致 TE 编码的核酸和蛋白质积累,从而干扰细胞
体内平衡并可能导致 DNA 损伤,破坏基因组完整性。据报道 TE 上调
蝾螈、海参和蠕虫的组织再生过程中。我假设 TE 激活是
必须抑制组织损伤才能成功再生的标志,并且无法抑制 TE
将阻碍再生。支持这一假设的是,我对批量 RNA-seq 数据的初步分析揭示了 TE
在眼睛再生的早期阶段上调,随后在组织修复之前恢复到控制水平。
我预测斑马鱼和其他具有强大再生能力的生物会部署特定的控制系统
抑制再生过程中的 TE 活性。这里我直接测试Piwi通路在抑制中的作用
斑马鱼眼睛再生过程中的 TE 活性。已知 Piwi 通路可抑制动物性腺中的 TE,
包括斑马鱼,但越来越多的证据表明该途径在体细胞组织中活跃,并且是
涡虫的再生。此外,我在斑马鱼的眼睛中检测到了 piwil1 的表达,从而提高了
可检验的假设,即它在眼睛再生过程中发挥作用。
我将利用斑马鱼视网膜再生模型和结合多模式的双管齐下的方法
基因组学和操作实验。首先,我将进一步确定 TE 上调是
通过使用公开可用的单点分析 5 个再生组织的 TE 表达变化来分析组织损伤
细胞转录组数据。其次,我将生成一个多组学单细胞数据集来评估 TE 表达变化
从损伤开始到功能恢复的视锥细胞再生过程中。这些数据将提供最
全面、精确地了解任何物种再生过程中的 TE 表达动态。最后,我会
通过使用 Piwi 途径调节 TE 活性,直接测试再生是否需要 TE 抑制
TE 活性的突变体和化学抑制剂。该项目的成果将是第一个直接
评估 TE 活性和调节在复杂组织再生过程中的作用。此外,这些研究将
为围绕再生能力之间差异的新的可检验假设奠定基础
对抗无能的生物体并导致新型再生疗法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krista Marie Angileri其他文献
Krista Marie Angileri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三江源国家公园黄河源园区食草野生动物与放牧家畜冲突的强度、影响及未来情景
- 批准号:42371283
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
- 批准号:42307349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
土壤动物对草地生态系统地下食物网碳氮传输过程及土壤有机质形成的影响
- 批准号:32301359
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Genetic analysis of intrinsic sensory neuron function in the enteric neural circuits
肠神经回路中内在感觉神经元功能的遗传分析
- 批准号:
10568622 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
INVESTIGATING HOW NOVELTY ENHANCES FEAR LEARNING & MEMORY
调查新奇事物如何增强恐惧学习
- 批准号:
10580151 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别: