3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
基本信息
- 批准号:10602505
- 负责人:
- 金额:$ 18.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAcrylatesAffectAlkaloidsAmericanAnti-Inflammatory AgentsBacteriaBerberineBiodegradationBiological AvailabilityBiological PreservationBiological ProcessBiomedical TechnologyCaco-2 CellsCellsClinicalColon CarcinomaColorectal CancerCrohn&aposs diseaseCytoprotectionDevelopmentDevicesDiseaseDrug Delivery SystemsEngineeringEpitheliumEscherichia coliExcisionFormulationGastrointestinal DiseasesGoalsGrowthHuman MicrobiomeHydrogelsImmobilizationIn SituIn VitroInflammationInflammatoryInflammatory Bowel DiseasesIntestinal DiseasesIntestinesIrritable Bowel SyndromeMalignant NeoplasmsMedical DeviceMicrobeModelingModulusNeedlesOutcomePatientsPerformancePharmaceutical PreparationsPlant ResinsPolymersProductionProteinsPublic HealthPublishingResearchStentsSystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTranslationsTreatment EfficacyUlcerative ColitisValidationVariantWaterWeightWorkYeastsaqueouscopolymercytotoxicitydesigndigital modelsdrug productioneffective therapyexperimental studyfabricationglobular proteingut microbiomeimprovedin vitro Modelin vivolocal drug deliverymechanical propertiesmetabolic engineeringmicroorganismmonomernext generationpolymerizationpreventprogramsprototyperesponsesynthetic biologytreatment durationtumorvirtual
项目摘要
PROJECT SUMMARY
Traditional drug delivery platforms are limited by the amount of drug that can be loaded into the delivery system.
While drug loading capacity can reach 50% by weight for some polymeric systems, the time period over which
the delivery of the therapeutic can be sustained is often limited. In addition, the therapeutic efficacy of a local
drug delivery system is related to the local bioavailability of the active agent. Devices that bio-catalytically
produce the therapeutic in situ could thus provide more effective local delivery of the active drug and improve
therapeutic efficacy. The long-term vision for this program is to create the next-generation 3D printed in situ drug
production and delivery devices, including drug-eluting stents, microneedles, and patches, based on engineered
living materials (ELMs) for localized and sustained therapeutic delivery. ELMs are composites of microorganisms
incorporated within a polymeric matrix, wherein the cells maintain their viability and can be metabolically
engineered to produce a therapeutic compound. Despite the immense potential of ELMs for drug delivery
applications, the primary challenges to the deployment of ELMs as drug-eluting stents or patches to treat
intestinal diseases are that ELMs must (i) be processable into precise form factors (e.g., patient-specific stents)
with the requisite mechanical properties, (ii) biodegrade into non-cytotoxic components at predetermined rates,
and (iii) bio-catalytically produce and elute the therapeutic agent in situ for the lifetime of the device. The objective
of this proposal is to develop 3D printable resins that afford biodegradable hydrogel constructs with a tunable
stiffness, and to demonstrate the fabrication of a prototype ELM device for sustained delivery of a model
compound. In Aim 1, we will create aqueous resins with non-pathogenic E. coli Nissle 1917 (EcN) that can be
3D printed into hydrogel constructs using a commercially available 3D printer. We will formulate aqueous resins
comprised of soluble globular protein derivatives that can be co-polymerized with water-soluble acrylate
monomers upon photo-initiated polymerization. The mechanical properties of the ELM hydrogels (stiffness,
strength, and toughness) and rates of enzymatic degradation will be quantified for each resin formulation. In Aim
2, we will metabolically engineer non-pathogenic EcN to produce berberine as a model therapeutic compound.
We will further evaluate the cytotoxicity and epithelial integrity of Caco-2 cells in the presence of 3D printed
ELMs. As validation of these ELMs we will use an in vitro model to confirm the production and elution of berberine
from the 3D printed ELM by evaluating the Caco-2 response to proinflammatory stimulation. We envision these
3D printed ELMs to be used as devices for local drug delivery in the treatment of malignancies or inflammatory
diseases affecting the intestines. While our ELM platform is compatible with a broad array of microorganisms
that include yeast and bacteria, we have chosen to focus on engineered variants of E. coli Nissle 1917, a
commensal strain of bacteria common within the gut microbiome. Using a microorganism native to the human
microbiome may facilitate translation of our platform to treat intestinal diseases.
项目概要
传统的药物输送平台受到可装载到输送系统中的药物量的限制。
虽然某些聚合物系统的载药量可以达到重量的 50%,但
治疗的持续递送通常是有限的。另外,局部治疗的效果
药物递送系统与活性剂的局部生物利用度有关。生物催化装置
原位产生治疗剂因此可以提供活性药物更有效的局部递送并改善
治疗功效。该项目的长期愿景是创造下一代 3D 打印原位药物
基于工程设计的生产和输送设备,包括药物洗脱支架、微针和贴片
用于局部和持续治疗传递的活性材料(ELM)。 ELM 是微生物的复合材料
掺入聚合物基质中,其中细胞保持其活力并可以代谢
设计用于生产治疗化合物。尽管 ELM 在药物输送方面具有巨大潜力
应用,将 ELM 部署为药物洗脱支架或贴片来治疗的主要挑战
肠道疾病的特点是 ELM 必须 (i) 可加工成精确的形状因素(例如患者特异性支架)
具有必要的机械性能,(ii)以预定的速率生物降解为非细胞毒性成分,
(iii)在装置的使用寿命期间原位生物催化地产生和洗脱治疗剂。目标
该提案的目的是开发可 3D 打印的树脂,提供可生物降解的水凝胶结构,并具有可调的
刚度,并演示用于持续交付模型的原型 ELM 设备的制造
化合物。在目标 1 中,我们将使用非致病性大肠杆菌 Nissle 1917 (EcN) 制造水性树脂,该树脂可以
使用市售 3D 打印机 3D 打印成水凝胶结构。我们将配制水性树脂
由可溶性球状蛋白衍生物组成,可与水溶性丙烯酸酯共聚
光引发聚合时的单体。 ELM 水凝胶的机械性能(刚度、
强度和韧性)和酶降解速率将针对每种树脂配方进行量化。瞄准
2,我们将通过代谢工程非致病性 EcN 来生产小檗碱作为模型治疗化合物。
我们将进一步评估 Caco-2 细胞在 3D 打印的情况下的细胞毒性和上皮完整性
ELM。作为对这些 ELM 的验证,我们将使用体外模型来确认小檗碱的产生和洗脱
通过评估 Caco-2 对促炎刺激的反应,从 3D 打印的 ELM 中获得结果。我们设想这些
3D 打印 ELM 可用作治疗恶性肿瘤或炎症的局部药物输送装置
影响肠道的疾病。我们的 ELM 平台与多种微生物兼容
包括酵母和细菌,我们选择重点关注大肠杆菌 Nissle 1917 的工程变体,这是一种
肠道微生物组中常见的细菌共生菌株。使用人类原生微生物
微生物组可能有助于我们的平台转化为治疗肠道疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alshakim Nelson其他文献
Alshakim Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alshakim Nelson', 18)}}的其他基金
3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
- 批准号:
10370976 - 财政年份:2022
- 资助金额:
$ 18.17万 - 项目类别:
Multivalent Well-Defined A,B-Alternating Polymers
多价明确定义的 A,B-交替聚合物
- 批准号:
6829984 - 财政年份:2004
- 资助金额:
$ 18.17万 - 项目类别:
Multivalent Well-Defined A,B-Alternating Polymers
多价明确定义的 A,B-交替聚合物
- 批准号:
6986132 - 财政年份:2004
- 资助金额:
$ 18.17万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 18.17万 - 项目类别:
3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
- 批准号:
10370976 - 财政年份:2022
- 资助金额:
$ 18.17万 - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 18.17万 - 项目类别:
Novel Dissipative Total Disc Replacement for Restoration of Natural Motion for Treatment of Degenerative Disc Disease
新型耗散性全椎间盘置换术恢复自然运动以治疗退行性椎间盘疾病
- 批准号:
10304800 - 财政年份:2021
- 资助金额:
$ 18.17万 - 项目类别:
Multi-material stereolithographic 3D-printing for prototyping Tissue Chips
用于制作组织芯片原型的多材料立体光刻 3D 打印
- 批准号:
10265548 - 财政年份:2020
- 资助金额:
$ 18.17万 - 项目类别: