Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals with Transtibial Amputation Using Dynamic Stereo X-Ray
使用动态立体 X 射线量化小腿截肢者残肢窝接口中的骨骼和皮肤运动
基本信息
- 批准号:10597108
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcclimatizationAddressAffectAirAlgorithmsAmputationBiomechanicsCadaverClinical TrialsComplexComputer softwareDataDevelopmentDistalFreedomFutureGaitGoalsGuidelinesImageImaging TechniquesImaging technologyIndividualInvestigationLimb structureLower ExtremityMeasurementMeasuresMechanicsMethodologyMethodsMotionMovementPainPerformancePhasePositioning AttributeProcessProsthesisProsthesis DesignProtocols documentationPumpRadio-OpaqueResearch PersonnelResidual stateRoentgen RaysRotationSamplingSecureSkinSpeedSuctionSurfaceSuspensionsSystemTechniquesTestingTimeTissuesTranslationsUniversitiesVacuumValidationWalkingX-Ray Computed Tomographyanalytical toolbonebrassclinical practicecomorbiditydigital imagingevidence baseexperienceimprovedin vivokinematicsmillimeterprosthesis fittingprosthetic socketresidual limbskeletalskeletal movementsocket designsoft tissuethree-dimensional modelingtibiatransmission processtreadmill
项目摘要
Individuals with lower extremity amputation (LEA) often experience relative motion between their
residual limb and the prosthetic socket, such as vertical translation and axial rotation, which can cause inefficient
dynamic load transmission from the distal prosthetic components to the residual limb. This can lead to
significant secondary consequences, such as pain, gait deviations, and discomfort that limit mobility and
autonomy. Assessments of the relative motion between the bone and the prosthetic socket have been performed,
but there is little existing data on dynamic, in vivo residual limb-socket kinematics since most investigations
have been performed using non-dynamic testing protocols, static measurements, or with unvalidated surface
marker-based motion capture systems. Dynamic Stereo X-ray (DSX) is an advanced imaging technology that can
quantify 3D bone movement and tissue/liner deformation inside a prosthetic socket during dynamic activities.
It can achieve sub-millimeter accuracy of bone pose (position and orientation) measurement during functional
movements by combining 3D models derived from CT scans with movement data from biplanar x-ray video.
There is a substantial gap in our understanding of the complex mechanics of the residual limb-socket
interface during dynamic activities that limit the ability to improve prosthetic design. Our 4-year goals for this
project are to develop the analytical tools to quantify both the dynamic, in-vivo kinematics between the residual
limb and socket, as well as the mechanism of residual tissue/liner deformation. In order to validate the sensitivity
of this methodology to differences in socket suspension, we will evaluate 2 suspension systems: elevated vacuum
(EV) and simple suction. We hypothesize that an efficient and highly accurate method to quantify the dynamic
interaction between the residual limb and prosthetic socket will be sensitive enough to distinguish between
different types of prosthetic socket suspension, which will further the biomechanical understanding of socket
design. To do so, the investigators will address the following aims: (1) To optimize the DSX procedural setup for
the accurate tracking of the prosthetic socket, skeletal kinematics, and tissue/liner deformation; (2) To quantify
the relative motion between the residual tibia and the prosthetic socket during dynamic activities; and (3) To
measure the deformation of the skin and liner in the prosthetic socket during dynamic activities.
To address these aims, we will first employ a cadaver study to optimize the placement of an array of radio-
opaque beads and markers on the socket, liner, and skin to simultaneously assess both dynamic skeletal
movement and residual tissue/liner deformation. Five cadaver limbs will be utilized in an iterative process to
develop an optimal marker setup. Stance phase gait will be simulated during each DSX session to induce bone
movement and skin/liner deformation. The number and placement of markers will be evaluated after each
session to refine the marker placement to track skin/liner deformation and skeletal movement. Once an optimal
marker setup is identified, 21 subjects with transtibial amputation will be fit with a socket capable of being
suspended via both EV and traditional suction. Subjects will undergo a 4-week acclimation period and then be
tested at the DSX facility at Rutgers University. DSX will be utilized to track skeletal and skin/liner motion under
both suspension techniques during 3 dynamic activities: treadmill walking at self-selected speed, fast walking
(10% faster), and a step-down movement. The performance of the two suspension techniques (active EV and
normal suction) will be tested by quantifying the 3D bone movement of the residual tibia with respect to the
prosthetic socket and quantifying liner and soft tissue deformation at the socket-residuum interface.
By using the analytical tools for a highly accurate, in-vivo assessment of residual limb-socket motion, we
can provide vital foundational information to aid in the development of new methods and techniques to enhance
prosthetic fit that have the potential to reduce secondary physical comorbidities and degenerative changes that
result from complications of poor prosthetic load transmission.
下肢截肢 (LEA) 患者经常会经历其身体之间的相对运动
残肢和假肢接受腔的垂直平移和轴向旋转等会导致效率低下
动态负载从远端假肢部件传递到残肢。这可能会导致
显着的次要后果,例如疼痛、步态偏差和限制活动能力的不适
自治。已经对骨骼和假肢接受腔之间的相对运动进行了评估,
但自从大多数研究以来,关于动态、体内残肢插座运动学的现有数据很少
已使用非动态测试协议、静态测量或未经验证的表面进行
基于标记的动作捕捉系统。动态立体 X 射线 (DSX) 是一种先进的成像技术,可以
量化动态活动期间假肢接受腔内的 3D 骨骼运动和组织/衬垫变形。
它可以在功能期间实现亚毫米级精度的骨姿势(位置和方向)测量
通过将 CT 扫描得出的 3D 模型与双平面 X 射线视频的运动数据相结合来分析运动。
我们对残肢窝的复杂机制的理解存在很大差距
动态活动期间的界面限制了改进假肢设计的能力。我们的 4 年目标
该项目的目的是开发分析工具来量化残余物之间的动态体内运动学
肢体和关节窝,以及残余组织/内衬变形的机制。为了验证灵敏度
根据这种方法与插座悬挂的差异,我们将评估 2 种悬挂系统: 高真空
(EV) 和简单的抽吸。我们假设有一种有效且高度准确的方法来量化动态
残肢和假肢接受腔之间的相互作用将足够敏感以区分
不同类型的假肢接受腔悬挂,这将进一步加深对接受腔生物力学的理解
设计。为此,研究人员将实现以下目标:(1)优化 DSX 程序设置
准确跟踪假肢接受腔、骨骼运动学和组织/内衬变形; (2)量化
动态活动时残余胫骨与假肢接受腔之间的相对运动; (3) 至
测量动态活动期间假肢接受腔中的皮肤和衬垫的变形。
为了实现这些目标,我们将首先采用尸体研究来优化一系列无线电的放置
窝、内衬和皮肤上的不透明珠子和标记可同时评估动态骨骼
运动和残余组织/内衬变形。将在迭代过程中使用五个尸体肢体
制定最佳标记设置。在每个 DSX 会话期间将模拟站立阶段步态以诱导骨
运动和皮肤/内衬变形。标记的数量和位置将在每次之后进行评估
会话以优化标记位置以跟踪皮肤/内衬变形和骨骼运动。一旦最优
标记设置确定后,21 名经过胫骨截肢的受试者将安装一个能够
通过电动汽车和传统吸力悬挂。受试者将经历 4 周的适应期,然后
在罗格斯大学的 DSX 设施中进行了测试。 DSX 将用于跟踪骨骼和皮肤/内衬运动
3种动态活动中的两种悬挂技术:以自选速度在跑步机上行走、快速行走
(快 10%),以及降压运动。两种悬架技术(主动 EV 和
正常吸力)将通过量化残余胫骨相对于
假肢接受腔并量化接受腔-残渣界面处的衬里和软组织变形。
通过使用分析工具对残肢窝运动进行高精度的体内评估,我们
可以提供重要的基础信息,帮助开发新方法和技术,以增强
假肢贴合有可能减少继发性身体合并症和退行性变化
这是由于假肢负荷传递不良引起的并发症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Maikos其他文献
Jason Maikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Maikos', 18)}}的其他基金
Effect of Prosthetic Socket Design on Residual Limb Motion using Biplane X-Ray Video
使用双平面 X 射线视频研究假肢接受腔设计对残肢运动的影响
- 批准号:
9920006 - 财政年份:2016
- 资助金额:
-- - 项目类别:
相似国自然基金
栓皮栎适应环境的基因组基础及其对未来气候的响应模式研究
- 批准号:32301617
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TDT1调控水稻分蘖适应环境温度的分子机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于肠道微生物研究两种入侵福寿螺快速适应环境变化的机制
- 批准号:32170434
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
自适应环境结构光生成方法研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于自适应环境感知与融合的高隐蔽卫星通信技术
- 批准号:U1836201
- 批准年份:2018
- 资助金额:252.0 万元
- 项目类别:联合基金项目
相似海外基金
Enhancing Melanoma TIL Efficacy with Multifactor mRNA-Mediated T Cell Reprogramming
通过多因子 mRNA 介导的 T 细胞重编程增强黑色素瘤 TIL 功效
- 批准号:
10721549 - 财政年份:2023
- 资助金额:
-- - 项目类别:
VRSingTogether: Digital therapeutic virtual reality tool to mitigate the effects of Alzheimer's Disease (AD) and Alzheimer's-Disease-Related Dementias (ADRD)
VRSingTogether:数字治疗虚拟现实工具,可减轻阿尔茨海默病 (AD) 和阿尔茨海默病相关痴呆 (ADRD) 的影响
- 批准号:
10698251 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Project 1: Manipulating E-cigarette Nicotine to Promote Public Health
项目一:操控电子烟尼古丁促进公众健康
- 批准号:
10666067 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Preclinical validation of small molecule immunomodulators for the treatment of Crohn's disease
小分子免疫调节剂治疗克罗恩病的临床前验证
- 批准号:
10600659 - 财政年份:2023
- 资助金额:
-- - 项目类别: