Data Science for Diverse Scholars in Down Syndrome Research (DS3)
唐氏综合症研究中不同学者的数据科学 (DS3)
基本信息
- 批准号:10596430
- 负责人:
- 金额:$ 29.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-02 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAdvocateAwardBioinformaticsBiometryCareer MobilityCase StudyClinicalCohort StudiesCollectionColoradoCommunitiesDataData AnalysesData Coordinating CenterData ScienceData SetDevelopmentDisciplineDown SyndromeEducational CurriculumEducational process of instructingEducational workshopEnsureEnvironmentEventFAIR principlesFacultyFeedbackFoundationsFundingFutureGeneral PopulationGenerationsHigh Performance ComputingHumanImmersionIndividualLearningLifeLinuxMetadataMinorityMissionPersonsPostdoctoral FellowProteomicsPythonsReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesStudentsTrainingTraining ProgramsUnderrepresented MinorityUnited States National Institutes of HealthUniversitiesVisualizationWritinganalytical toolbig data managementcloud basedcluster computingdata hubdata portaldata visualizationdiversity and equitygraduate studentliteracymetabolomicsmultidimensional datamultidisciplinarynext generation sequencingoutreachpublic repositoryresponsible research conductskillsstudent trainingteacher communitytooltranscriptometranscriptome sequencingtutoring
项目摘要
PROJECT SUMMARY.
The mission of the INCLUDE Data Coordinating Center (INCLUDE DCC) is to accelerate research that benefits
individuals with Down syndrome (DS) by facilitating access and analysis of data from cohort studies of people
with DS. A key aspect of this mission is to ensure that the INCLUDE Data Hub and Portal and the datasets
hosted in this resource are available to a diverse community of researchers. Therefore, to increase diversity,
equity, and inclusion in the INCLUDE Project specifically and in the DS research community more broadly, we
propose to develop a training program in data sciences for historically under-represented minorities (URMs).
Supported by this administrative supplement, we propose to develop an immersive summer course in data
sciences known as the Data Science for Diverse Scholars in Down Syndrome Research (DS3). This course will
provide training in the basics of generation, identification, and collection of high content multidimensional
datasets; their management, analysis, and visualization; as well as development of key professional skills
required for the career advancement of diverse trainees.
Led by a multidisciplinary teaching team, the DS3 will be developed along the following Specific Aims:
Aim 1. To teach students how to perform FAIR research in the INCLUDE Data Hub and beyond. We will
teach on the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) and demonstrate the
FAIR use of datasets available in the INCLUDE Data Hub and other synergistic public repositories. We will tutor
students about where to find datasets, how to frame answerable questions, considerations in using public data,
and how to analyze these datasets in a cloud-based environment.
Aim 2. To train students in the skills necessary for big data management, analysis, and visualization.
Using short-read next-generation sequencing data as a foundational data type, students will learn the basics
of high-performance computing skills in real life scenarios. Students will be trained on the integration of -omics
data types with clinical metadata, data visualization, and diverse biostatistical tools.
Aim 3. To empower diverse trainees with professional skills necessary for career advancement. We will
teach on the importance of networking, grantsmanship, and presentation skills. Furthermore, we will hold
networking events for these students in which they will meet prominent DS researchers and self-advocates
invited as guest speakers. Students will also present on their research projects and practice appropriate scientific
discourse in providing and receiving feedback.
Altogether, this training program will enhance diversity, equity, and inclusion in the pool of young DS
researchers, while also elevating data science literacy to accelerate research that will benefit people with DS.
项目摘要。
INCLUDE 数据协调中心 (INCLUDE DCC) 的使命是加速研究,造福人类
通过促进对人群队列研究数据的访问和分析,患有唐氏综合症 (DS) 的个体
与DS。这一使命的一个关键方面是确保包括数据中心和门户以及数据集
该资源中托管的内容可供不同的研究人员社区使用。因此,为了增加多样性,
特别是在 INCLUDE 项目和更广泛的 DS 研究社区中,我们
建议为历史上代表性不足的少数群体(URM)制定数据科学培训计划。
在本行政补充文件的支持下,我们建议开发一门沉浸式数据夏季课程
被称为唐氏综合症研究多元化学者数据科学 (DS3) 的科学。本课程将
提供高内容多维数据生成、识别和收集的基础知识培训
数据集;它们的管理、分析和可视化;以及关键专业技能的发展
不同学员的职业发展所需。
DS3 由多学科教学团队领导,将按照以下具体目标进行开发:
目标 1. 教导学生如何在 INCLUDE 数据中心及其他区域进行公平研究。我们将
教授 FAIR 原则(可查找性、可访问性、互操作性和可重用性)并演示
公平使用 INCLUDE 数据中心和其他协同公共存储库中提供的数据集。我们会辅导
学生了解在哪里可以找到数据集、如何构建可回答的问题、使用公共数据的注意事项、
以及如何在基于云的环境中分析这些数据集。
目标 2. 培养学生大数据管理、分析和可视化所需的技能。
使用短读长下一代测序数据作为基础数据类型,学生将学习基础知识
现实生活场景中的高性能计算技能。学生将接受组学整合方面的培训
具有临床元数据、数据可视化和各种生物统计工具的数据类型。
目标 3. 为不同的学员提供职业发展所需的专业技能。我们将
教授网络、资助和演讲技巧的重要性。此外,我们还将举办
为这些学生举办的社交活动,他们将在活动中结识著名的 DS 研究人员和自我倡导者
受邀作为演讲嘉宾。学生还将展示他们的研究项目并实践适当的科学
提供和接收反馈的话语。
总而言之,该培训计划将增强年轻 DS 人才库的多样性、公平性和包容性
研究人员,同时还提高数据科学素养,以加速研究,使 DS 患者受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack DiGiovanna其他文献
Jack DiGiovanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack DiGiovanna', 18)}}的其他基金
Advancing the cloud-based data access and interoperability infrastructure of the INCLUDE data ecosystem
推进 INCLUDE 数据生态系统基于云的数据访问和互操作性基础设施
- 批准号:
10596806 - 财政年份:2022
- 资助金额:
$ 29.1万 - 项目类别:
Data Science for Diverse Scholars in Down Syndrome Research (DS3)
唐氏综合症研究中不同学者的数据科学 (DS3)
- 批准号:
10782796 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
Kids First Data Resource Center (KFDRC): Harnessing Data-Driven Opportunities in the Present on behalf of the Future of Common Fund Data Ecosystem (CFDE)
Kids First 数据资源中心 (KFDRC):代表共同基金数据生态系统 (CFDE) 的未来,利用当前数据驱动的机会
- 批准号:
10444365 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
DCC supplement for Experimental Models Portal and Enhanced Security
DCC 对实验模型门户和增强安全性的补充
- 批准号:
10853825 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
Kids First Data Resource Center (KFDRC): Harnessing Data-Driven Opportunities in the Present on behalf of the Future of Common Fund Data Ecosystem (CFDE)
Kids First 数据资源中心 (KFDRC):代表共同基金数据生态系统 (CFDE) 的未来,利用当前数据驱动的机会
- 批准号:
10468523 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
Kids First Data Resource Center (KFDRC): Harnessing Data-Driven Opportunities in the Present on behalf of the Future of Common Fund Data Ecosystem (CFDE)
Kids First 数据资源中心 (KFDRC):代表共同基金数据生态系统 (CFDE) 的未来,利用当前数据驱动的机会
- 批准号:
10683508 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
Kids First Data Resource Center (KFDRC): Harnessing Data-Driven Opportunities in the Present on behalf of the Future of Common Fund Data Ecosystem (CFDE)
Kids First 数据资源中心 (KFDRC):代表共同基金数据生态系统 (CFDE) 的未来,利用当前数据驱动的机会
- 批准号:
10907061 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
相似海外基金
Supplement to HOME Trial: Role of Justice Involvement in Implementation and Effectiveness of Housing First for Youth Experiencing Homelessness
HOME 审判的补充:司法参与在无家可归青年住房优先的实施和有效性中的作用
- 批准号:
10731903 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Facility Management, Maintenance and Operation Core
设施管理、维护和运营核心
- 批准号:
10793908 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Washington University Institute of Clinical and Translational Sciences
华盛顿大学临床与转化科学研究所
- 批准号:
10700256 - 财政年份:2022
- 资助金额:
$ 29.1万 - 项目类别:
The CHARMED model: a multimorbidity simulation model for people aging with HIV
CHARMED 模型:针对艾滋病毒老年患者的多发病模拟模型
- 批准号:
10790700 - 财政年份:2021
- 资助金额:
$ 29.1万 - 项目类别:
A Technology-Driven Intervention to Improve Early Detection and Management of Cognitive Impairment
技术驱动的干预措施可改善认知障碍的早期检测和管理
- 批准号:
10838956 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别: