Structure guided design of photoselectable channelrhodopsins
光选择性通道视紫红质的结构引导设计
基本信息
- 批准号:9244699
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBRAIN initiativeBehaviorBrainCell Culture TechniquesCellsComplexCrystallographyDataDevelopmentDiseaseElectrophysiology (science)ElectrostaticsEngineeringEnvironmentFeelingFutureGenetic MarkersGoalsGrantHeadHealthKnowledgeLightLightingMammalian CellMethodsMotor CortexMusMutationNervous system structureNeuronsNeurosciencesOpsinOpticsOutcomePatternPhaseProcessPropertyProtein EngineeringResearchResolutionRetinalRoentgen RaysShapesStructureSynchrotronsTechnologyThinkingawakebeamlinebehavior influencebrain volumedesignflexibilityfree-electron laserin vivomeetingsmutantnervous system disorderneural circuitneuroregulationnovelnovel strategiesoptogeneticspreventprogramsprototyperelating to nervous systemsealtooltraittwo-photon
项目摘要
Project Summary:
This proposal outlines the development of a fundamentally new optogenetic technology capable
of flexibly manipulating the activity of thousands of neurons contributing to the dynamic activity
of distributed neural circuits with single neuron resolution.
No method that currently exists even
remotely meets the need of flexible, selective control of thousands of neurons distributed across
large volumes of the brain. Filling this methodological gap is a central research objective of the
BRAIN Initiative, because doing so will transform our ability to investigate how the nervous
system encodes, processes, utilizes, stores, and retrieves information.
The overall objective for this application is to acquire critical structural knowledge of photoactive
states of a red-shifted channelrhodopsin and use these to engineer a photoselectable channel
prototype that demonstrates the potential of our approach for future development in behaving
animals. This would allow opsin-expressing neurons to be flexibly selected, activated, and
deselected with light. By leveraging new structural knowledge, we anticipate that we can
develop a fundamentally new approach to optogenetics that takes us beyond genetically
targeted control and into an era of functionally targeted, flexible control of any neural ensemble.
The aims of our research are to obtain the first atomic structures of red-shifted channelrhodopsin
mutants in three channel states, engineer a three-state ReaChR mutant with high open
conductance and optimized action spectra, and demonstrate reversible photoselective control of
neurons in vivo with PReaChR prototypes.
We anticipate that completion of these aims will yield the following expected outcomes. First, it
will produce new knowledge of the underlying structural transformations between
channelrhodopsin photostates that will enable efficient computational design of photoselectable
optogenetic tools. Second, it will produce the first examples of photoselective
channelrhodopsins useful for neural excitation. Third, it will assess the utility of these new
opsins for flexible control of distributed sets of neurons. Collectively, these will provide a
roadmap to extending the transformative new trait of photoselectabilty to a wide range of
existing optogenetic tools for excitation, inhibition and modulation of neural activity. Further
research in this direction should ultimately enable flexible control of spatially complex
distributions of neurons in head-fixed and freely moving animals during behavior, a key to
furthering our understanding of the intricate neural dynamics that underlie our thoughts, feeling,
and actions and how circuit dynamics are disrupted by neurological disorders.
项目摘要:
该提案概述了一种从根本上进行新的光遗传技术的发展
灵活地操纵数千个神经元的活性,导致动态活动
具有单个神经元分辨率的分布式神经回路。
目前没有目前存在的方法
远程满足了对分布在跨越的数千个神经元的灵活,选择性控制的需求
大脑的大量。填补这一方法论差距是
大脑计划,因为这样做将改变我们调查如何紧张的能力
系统编码,过程,利用,存储和检索信息。
该应用程序的总体目的是获得光活性的关键结构知识
红移的频道hopopsin的状态,并使用这些状态来设计可观的频道
原型展示了我们方法对未来发展的潜力
动物。这将使表达Opsin的神经元灵活地,激活和
用光取代。通过利用新的结构知识,我们预计我们可以
开发一种基本的新方法来遗传学,这使我们超越了遗传学
有针对性的控制,并进入功能靶向,灵活地控制任何神经合奏的时代。
我们研究的目的是获得红移通道hopopsin的第一个原子结构
在三个频道状态下的突变体,工程师一个三态触及突变体,高开口
电导和优化的动作光谱,并证明了对
带有原型的体内神经元。
我们预计这些目标的完成将产生以下预期结果。首先,它
将产生有关潜在结构转换之间的新知识
ChannelRhopopsin光静素将实现可观的可观计算设计
光遗传学工具。其次,它将产生照片选择性的第一个示例
ChannelRhopopsins对神经激发有用。第三,它将评估这些新的效用
OPSINS灵活控制分布式神经元集。总的来说,这些将提供
路线图将PhotoleCtabilty的新型新特征扩展到了广泛的范围
现有的光遗传学工具,用于激发,抑制和调节神经活动。更远
朝这个方向进行研究最终应能够灵活控制空间复杂
在行为期间,神经元在头部固定和自由移动动物中的分布,这是一个关键
进一步理解我们思想,感觉,
动作以及电路动力学如何被神经系统疾病破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Cherezov其他文献
Vadim Cherezov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Cherezov', 18)}}的其他基金
Non-addictive Angiotensin AT2 inhibitors for neuropathic pain relief
用于缓解神经性疼痛的非成瘾性血管紧张素 AT2 抑制剂
- 批准号:
10396694 - 财政年份:2020
- 资助金额:
$ 23.1万 - 项目类别:
Non-addictive Angiotensin AT2 inhibitors for neuropathic pain relief
用于缓解神经性疼痛的非成瘾性血管紧张素 AT2 抑制剂
- 批准号:
10405661 - 财政年份:2020
- 资助金额:
$ 23.1万 - 项目类别:
Non-addictive Angiotensin AT2 inhibitors for neuropathic pain relief
用于缓解神经性疼痛的非成瘾性血管紧张素 AT2 抑制剂
- 批准号:
10645104 - 财政年份:2020
- 资助金额:
$ 23.1万 - 项目类别:
Structural biology of G protein-coupled receptors
G蛋白偶联受体的结构生物学
- 批准号:
9925243 - 财政年份:2018
- 资助金额:
$ 23.1万 - 项目类别:
Structural biology of G protein-coupled receptors
G蛋白偶联受体的结构生物学
- 批准号:
10396469 - 财政年份:2018
- 资助金额:
$ 23.1万 - 项目类别:
Structure guided design of photoselectable channelrhodopsins
光选择性通道视紫红质的结构引导设计
- 批准号:
9360611 - 财政年份:2016
- 资助金额:
$ 23.1万 - 项目类别:
HT structure determination of GPCRs by LCP serial femtosecond nanocrystallography
LCP 系列飞秒纳米晶体学测定 GPCR 的 HT 结构
- 批准号:
9078982 - 财政年份:2014
- 资助金额:
$ 23.1万 - 项目类别:
HT structure determination of GPCRs by LCP serial femtosecond nanocrystallography
LCP 系列飞秒纳米晶体学测定 GPCR 的 HT 结构
- 批准号:
8612932 - 财政年份:2014
- 资助金额:
$ 23.1万 - 项目类别:
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Pre-motor neural circuits enable versatile and sequential limb movements
前运动神经回路可实现多功能且连续的肢体运动
- 批准号:
10721086 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
BRAIN CONNECTS: Center for a pipeline of high throughput integrated volumetric electron microscopy for whole mouse brain connectomics
大脑连接:用于全小鼠大脑连接组学的高通量集成体积电子显微镜管道中心
- 批准号:
10665386 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别: